Probing RAS-mediated Signaling with Monobody Inhibitors
使用单体抑制剂探测 RAS 介导的信号转导
基本信息
- 批准号:10530818
- 负责人:
- 金额:$ 60.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectAffinityAmino AcidsAntibodiesArchitectureAwardBindingBinding ProteinsBiochemicalBiochemistryBiological ProductsBiological TestingBiologyCancer ControlCancer PatientCause of DeathCellsColorectal CancerCommunitiesComplexDataDevelopmentDimerizationDisulfidesEngineeringFDA approvedFamilyFamily memberFundingGTP BindingGeneticGuanineGuanine Nucleotide Exchange FactorsGuanine NucleotidesGuanosine TriphosphateGuanosine Triphosphate PhosphohydrolasesHumanKRAS2 geneLaboratoriesLobeMalignant NeoplasmsMalignant neoplasm of lungMalignant neoplasm of pancreasMediatingMolecularMutateMutationNucleotidesOncogenesOncogenicPharmaceutical PreparationsPharmacologyPhaseProcessProductivityProtein EngineeringProtein IsoformsProteinsRAS genesRAS inhibitionRas InhibitorReagentResearch PersonnelRoleSeriesSignal TransductionSiteSpecificitySynthetic GenesSystemTechnologyTherapeuticUnited StatesWorkanticancer researchbasecancer therapyestablished cell linein vivoinhibitorinnovationinsightmouse modelmutantnanonovelnovel strategiespharmacophorepreventras Guanine Nucleotide Exchange Factorsrecruitsmall molecule inhibitorsuccesstherapeutic developmenttherapeutic targettherapeutically effectivetooltumor addictiontumorigenesisubiquitin ligase
项目摘要
Project Summary
Cancer is a leading cause of death in the United States and worldwide. This innovative multi-PI project in its 6th
year has established a novel approach to the challenge of discovering strategies to control cancer. Oncogenic
activation of the RAS family of GTPases occurs in ~30% of cancers making it the most frequently mutated
oncogene in human cancers. Despite impressive progress in our understanding of the biochemistry of RAS and
its role in tumorigenesis over the past 3 decades and the excitement of the first approved drug that directly
targets a particular oncogenic RAS mutant, development of effective therapeutics targeting RAS remains a grand
challenge. We have pioneered the use of monobody technology to define previously unrecognized vulnerabilities
in RAS. Monobodies are small synthetic binding proteins that achieve levels of affinity and selectivity for their
target similar to antibodies and can be used as tool biologics in biochemical, structural, cellular and in vivo studies.
In the current project period, we have developed and used two monobodies, NS1 and R15, to gain new insights
into RAS function and vulnerabilities. NS1 revealed the importance of the α4-α5 interface implicated in RAS
dimerization. R15 revealed the feasibility of targeting the nucleotide-free (apo) state of a subset of oncogenic
RAS mutants, despite the conventional wisdom that one cannot effectively compete against tightly bound
nucleotides in RAS. Furthermore, we have established the feasibility of developing monobodies that
noncovalently and selectively inhibit oncogenic RAS mutants and of selectively degrading RAS mutants using
monobody-VHL fusions. Building on these successes and strong preliminary data, the next phase of this project
aims to accomplish the following: 1, We will utilize NS1, R15 and additional monobodies as highly selective
perturbants to address important mechanistic questions in RAS biology, including roles of dimerization/self-
association in RAS effector activation, roles of wild-type KRAS in heterozygous KRAS mutant cells, and roles of
KRAS4A in tumorigenesis. 2, We will establish cell lines and mouse models using genetically encoded
monobodies to determine how specific modes of RAS inhibition affect tumorigenesis in vivo driven by oncogenic
RAS mutants. 3, We will develop monobodies with new specificity profiles to expand the scope of our project,
specifically those selective to NRAS, KRAS4A, and common RAS mutations. Results from this project will
advance our mechanistic understanding of RAS function at the biochemical, cellular and in vivo levels and inform
the development of therapeutics directly targeting RAS. Furthermore, uniquely powerful tools developed in this
project will empower the entire RAS community.
项目概要
癌症是美国和全世界的主要死亡原因。这个创新的多 PI 项目已进入第六个阶段
今年制定了一种新方法来应对发现控制癌症策略的挑战。致癌性
GTP 酶 RAS 家族的激活发生在约 30% 的癌症中,使其成为最常发生突变的癌症
人类癌症中的癌基因。尽管我们对 RAS 生物化学的理解取得了令人瞩目的进展,
过去 3 年来它在肿瘤发生中的作用,以及第一个批准的直接作用于肿瘤发生的药物的兴奋
针对特定的致癌 RAS 突变体,开发针对 RAS 的有效疗法仍然是一个重大任务
挑战。我们率先使用单体技术来定义以前未识别的漏洞
在RAS中。单体是小型合成结合蛋白,其亲和力和选择性达到一定水平
目标与抗体相似,可用作生化、结构、细胞和体内研究中的工具生物制剂。
在当前的项目期间,我们开发并使用了两个单体NS1和R15,以获得新的见解
深入了解 RAS 功能和漏洞。 NS1 揭示了 RAS 中涉及的 α4-α5 界面的重要性
二聚化。 R15揭示了靶向致癌基因子集的无核苷酸(apo)状态的可行性
RAS 突变体,尽管传统观点认为 RAS 突变体无法有效地与紧密结合的竞争
RAS 中的核苷酸。此外,我们已经确定了开发单体的可行性
非共价选择性抑制致癌 RAS 突变体和选择性降解 RAS 突变体
单体-VHL 融合。基于这些成功和强有力的初步数据,该项目的下一阶段
旨在实现以下目标: 1、我们将利用 NS1、R15 和其他单体作为高选择性
扰动来解决 RAS 生物学中的重要机制问题,包括二聚化/自-
RAS 效应子激活中的关联、野生型 KRAS 在杂合 KRAS 突变细胞中的作用以及
KRAS4A 在肿瘤发生中的作用。 2、我们将利用基因编码建立细胞系和小鼠模型
确定 RAS 抑制的特定模式如何影响致癌驱动的体内肿瘤发生
RAS突变体。 3,我们将开发具有新特异性的单体,以扩大我们的项目范围,
特别是那些对 NRAS、KRAS4A 和常见 RAS 突变具有选择性的突变。该项目的结果将
促进我们在生化、细胞和体内水平上对 RAS 功能的机制理解,并提供信息
直接针对 RAS 的疗法的开发。此外,在此开发了独特的强大工具
项目将为整个 RAS 社区提供支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SHOHEI KOIDE其他文献
SHOHEI KOIDE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SHOHEI KOIDE', 18)}}的其他基金
Novel biologics platform for targeting tumors driven by intracellular oncoproteins
用于靶向细胞内癌蛋白驱动的肿瘤的新型生物制剂平台
- 批准号:
10356663 - 财政年份:2021
- 资助金额:
$ 60.15万 - 项目类别:
Transport Mechanisms and Inhibition of Efflux Pumps in Pathogenic Organisms
病原生物外排泵的转运机制和抑制
- 批准号:
10344321 - 财政年份:2021
- 资助金额:
$ 60.15万 - 项目类别:
Novel biologics platform for targeting tumors driven by intracellular oncoproteins
用于靶向细胞内癌蛋白驱动的肿瘤的新型生物制剂平台
- 批准号:
10533364 - 财政年份:2021
- 资助金额:
$ 60.15万 - 项目类别:
Transport Mechanisms and Inhibition of Efflux Pumps in Pathogenic Organisms
病原生物外排泵的转运机制和抑制
- 批准号:
10531273 - 财政年份:2021
- 资助金额:
$ 60.15万 - 项目类别:
Accurate prediction of neutralization capacity from deep mining of SARS-CoV-2 serology
深度挖掘SARS-CoV-2血清学,准确预测中和能力
- 批准号:
10195613 - 财政年份:2020
- 资助金额:
$ 60.15万 - 项目类别:
Probing RAS-mediated signaling mechanisms with monobody inhibitors
使用单体抑制剂探索 RAS 介导的信号传导机制
- 批准号:
9977135 - 财政年份:2018
- 资助金额:
$ 60.15万 - 项目类别:
Probing RAS-mediated signaling mechanisms with monobody inhibitors
使用单体抑制剂探索 RAS 介导的信号传导机制
- 批准号:
10220892 - 财政年份:2018
- 资助金额:
$ 60.15万 - 项目类别:
Probing RAS-mediated signaling mechanisms with monobody inhibitors
使用单体抑制剂探索 RAS 介导的信号传导机制
- 批准号:
9751810 - 财政年份:2018
- 资助金额:
$ 60.15万 - 项目类别:
Probing RAS-mediated signaling mechanisms with monobody inhibitors
使用单体抑制剂探索 RAS 介导的信号传导机制
- 批准号:
9384266 - 财政年份:2017
- 资助金额:
$ 60.15万 - 项目类别:
Probing RAS-mediated Signaling with Monobody Inhibitors
使用单体抑制剂探测 RAS 介导的信号转导
- 批准号:
10666670 - 财政年份:2017
- 资助金额:
$ 60.15万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 60.15万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 60.15万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 60.15万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 60.15万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 60.15万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 60.15万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 60.15万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 60.15万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 60.15万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 60.15万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




