Regulation of Piezo2 Channels by G-protein Coupled Receptors and Endocytosis
G 蛋白偶联受体和内吞作用对 Piezo2 通道的调节
基本信息
- 批准号:10198568
- 负责人:
- 金额:$ 1.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:1-Phosphatidylinositol 4-KinaseAddressAdverse effectsAffectAfferent NeuronsAgonistAmericanAnimal ModelBehavioralBiochemicalBiological AssayBiotinylationCapsaicinCell membraneCell surfaceCellsChargeChemosensitizationChloroquineCoupledDataDoctor of PhilosophyDrug TargetingElectrophysiology (science)EndocytosisEnvironmentExcisionFluorescenceG-Protein-Coupled ReceptorsGoalsHealthHumanIn VitroIndividualInjuryIon ChannelLigationLightMechanicsMicroscopyMitogen-Activated Protein KinasesMolecularMusNerveNeuraxisNeuronsPainPathway interactionsPeripheralPersistent painPharmacologyPhasePhosphatidylinositolsPhosphotransferasesPiezo 2 ion channelPlayPostdoctoral FellowPreparationPrevalenceProcessProteinsRNARegulationReportingRoleSecond Messenger SystemsSensory ProcessSkinSpinal GangliaStimulusSymptomsSyndromeSystemTactileTechniquesTouch sensationVanilloidallodyniachronic paindisabilityexperienceexperimental studyextracellularimmunocytochemistryimprovedin vivoinhibitor/antagonistmechanical allodynianoveloptogeneticspersistent symptompublic health relevancereceptorresponsetranscriptome sequencingvoltage clamp
项目摘要
ABSTRACT
Mechanical allodynia is a hallmark symptom of chronic pain characterized by painful responses to innocuous
stimuli. However, little is known about the cellular and molecular regulation of this process. Recently, the
mechanically activated Piezo2 channels were identified as key players of mechanical allodynia in mice and
humans, but the molecules and proteins responsible for the sensitization of Piezo2 channels upon injury are
still poorly understood. Recent data from our lab show that activation of Gi-protein coupled receptors induces a
long-lasting potentiation of Piezo2 currents in Dorsal Root Ganglion (DRG) neurons and HEK293 cells. The
potentiation of Piezo2 currents was abolished by inhibiting the activity of Gβγ. Surprisingly, the inhibition of
Gβγ-downstream kinases, phosphoinositide 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK),
also abolished the potentiation of Piezo2 current suggesting an indirect effect of Gβγ on Piezo2 channels.
Therefore, for aim 1 (Ph.D. progress), we described a novel mechanism of regulation of Piezo2 currents by Gi-
protein coupled receptors. On the other hand, our lab has also shown that activation of Transient Receptor
Potential Vanilloids 1 (TRPV1) channels by capsaicin leads to robust inhibition of Piezo2 currents in DRG
neurons and heterologous systems. This inhibition is abolished by removing Ca2+ from the extracellular
solution, confirming a pivotal role of Ca2+ on Piezo2 channels. Preliminary data in our lab using total internal
reflection fluorescence (TIRF) show that Piezo2 channels are internalized upon activation of TRPV1 channels
in HEK293 cells, but whether Piezo2 channels are internalized via endocytosis is not known. For aim 2 (F99
phase), we hypothesize that activation of TRPV1 induces a Ca2+-triggered endocytosis that orchestrate the
inhibition of Piezo2 currents. We aim to identify molecules and proteins that regulate the activity of the
mechanically activated Piezo2 channels. We hope these novel findings could help us understand the process
of tactile allodynia and investigate the changes that affect the periphery and influence the central nervous
systems (aim 3-K00 phase) with the ultimate goal of providing new avenues for treatments of mechanical-pain
syndromes.
摘要
机械性异常性疼痛是慢性疼痛的标志性症状,其特征在于对无害物质的疼痛反应。
刺激。然而,人们对这一过程的细胞和分子调节知之甚少。近日
机械激活的Piezo 2通道被鉴定为小鼠机械异常性疼痛的关键参与者,
但是在损伤时负责Piezo 2通道致敏的分子和蛋白质是
仍然知之甚少。我们实验室的最新数据表明,Gi蛋白偶联受体的激活诱导了一种新的免疫应答。
背根神经节(DRG)神经元和HEK 293细胞中Piezo 2电流的持久增强。的
通过抑制Gβγ的活性,Piezo 2电流的增强被消除。令人惊讶的是,
Gβγ-下游激酶,磷酸肌醇3-激酶(PI 3 K)和丝裂原活化蛋白激酶(MAPK),
Gβ γ对Piezo 2通道的增强作用也消失,提示Gβγ对Piezo 2通道有间接作用。
因此,对于目标1(博士学位),进展),我们描述了一种新的机制,调节Piezo 2电流的Gi-
蛋白偶联受体另一方面,我们的实验室也表明,瞬时受体的激活
辣椒素诱导的潜在香草素1(TRPV 1)通道对背根神经节Piezo 2电流的抑制作用
神经元和异源系统。通过从细胞外去除Ca 2+来消除这种抑制作用。
解决方案,证实了Ca 2+对Piezo 2通道的关键作用。我们实验室的初步数据使用总内部
反射荧光(TIRF)显示,Piezo 2通道在TRPV 1通道激活后被内化
在HEK 293细胞中,Piezo 2通道是通过内吞作用内化的,但Piezo 2通道是否通过内吞作用内化尚不清楚。对于目标2(F99
阶段),我们假设TRPV 1的激活诱导了Ca 2+触发的内吞作用,
抑制Piezo 2电流。我们的目标是确定调节细胞活性的分子和蛋白质,
机械激活的Piezo 2通道。我们希望这些新的发现可以帮助我们理解这个过程
探讨触觉异常性疼痛的外周和中枢神经系统的变化
系统(目标3-K 00阶段),最终目标是为机械性疼痛的治疗提供新的途径
综合征
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Smith Del Rosario其他文献
John Smith Del Rosario的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Smith Del Rosario', 18)}}的其他基金
Homeostatic Regulatory Mechanisms in Nociceptors
伤害感受器的稳态调节机制
- 批准号:
10403750 - 财政年份:2019
- 资助金额:
$ 1.93万 - 项目类别:
Homeostatic Regulatory Mechanisms in Nociceptors
伤害感受器的稳态调节机制
- 批准号:
10673985 - 财政年份:2019
- 资助金额:
$ 1.93万 - 项目类别:
Homeostatic Regulatory Mechanisms in Nociceptors
伤害感受器的稳态调节机制
- 批准号:
10452662 - 财政年份:2019
- 资助金额:
$ 1.93万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 1.93万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 1.93万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 1.93万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 1.93万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 1.93万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 1.93万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 1.93万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 1.93万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 1.93万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 1.93万 - 项目类别:
Research Grant














{{item.name}}会员




