Mechanisms underlying activation and detoxification of aristolochic acids in human hepatic and renal cells

马兜铃酸在人肝肾细胞中的激活和解毒机制

基本信息

项目摘要

Aristolochic acids (AA), principal components of Aristolochia plants used worldwide for medicinal purposes, are potent carcinogens and nephrotoxins. Importantly, a unique mutational signature for AA has been documented in upper urothelial tract cancer, bladder cancer, renal cell carcinoma, hepatocellular carcinoma and intrahepatic cholangiocarcinoma. It is estimated that in China and other Asian countries, where herbal remedies are most widely used, 100 million people are at risk of developing AA-related cancers and/or chronic renal disease. In the US and Europe, herbal supplements containing AA are marketed through the Internet and continue to be used despite warnings to the contrary. Furthermore, in Balkan countries, Aristolochia plants are abundant in farming fields, poisoning soil and crops with AA. Considering all the above, there is an urgent need to understand biotransformation pathways of AA in order to reduce human exposure by devising novel chemical agents that control the activity of enzymes involved in AA metabolism. The limited knowledge of pathways for biotransformation of AA, amplified by the current conflict in this area of research regarding the role of sulfotransferases and nitroreductases in inducing AA toxicities, prevents the development of such strategies. This proposal builds on two important findings we obtained in earlier studies. Using an integrated human “liver- kidney-on-a-chip” system, we reported that activation of AA occurs in the liver as well as in the kidney. We also found that novel reductases might be important for AA metabolism and toxicity. Thus, the objective of this research is to evaluate the role of novel reductases in AA metabolism and toxicity and to resolve a controversy over the involvement of sulfotransferases and nitroreductases in bioactivation of AA in human liver and kidney. To achieve these goals, we employ a targeted CRISPR/CAS9 genome editing approach in human hepatic HepG2 and renal HK-2 cell lines to generate double-allelic, frame-shifting mutations in genes putatively involved in metabolism of AA. Engineered cell lines will be evaluated in terms of their sensitivity to AA and compared with respective parental cells. Mass spectrometric and DNA postlabelling techniques will be applied to quantify the major metabolites of AA and their DNA adducts, respectively. Plasmids expressing corresponding wild-type and catalytically inactive proteins will be used to transform knock-out cell lines in order to verify the involvement of particular enzymatic function in AA toxicities. To support findings in cultured cells, activities of recombinant proteins and cell lysates toward AA and N-hydroxyaristolactams, known metabolites of AA, will be studied. Successful completion of this research will establish novel genes involved in the biotransformaton of AA. This information will inform clinical scientists on design of therapeutics geared to reduce genotoxic and cytotoxic exposure, and will aid in defining individuals at risk of developing AA-related diseases. Given the worldwide exposure to AA, this research has major implications for global public health. Finally, the cell lines generated in our studies will then be available for use in investigations of other human carcinogens, toxins and drugs.
马兜铃酸(Aristolochic Acids,AA)是马兜铃属植物的主要成分, 是强致癌物和肾毒素。重要的是,AA的独特突变特征已经被发现。 在上尿路上皮癌、膀胱癌、肾细胞癌、肝细胞癌和 肝内胆管癌据估计,在中国和其他亚洲国家, 使用最广泛的是,1亿人有患AA相关癌症和/或慢性肾脏疾病的风险。 疾病在美国和欧洲,含有AA的草药补充剂通过互联网销售, 尽管有相反的警告,但仍继续使用。此外,在巴尔干半岛的国家,马兜铃属植物是 大量存在于农田中,用AA毒害土壤和作物。考虑到上述情况,迫切需要 了解AA的生物转化途径,以通过设计新的化学品来减少人类暴露 控制参与AA代谢的酶活性的试剂。对疾病途径的有限了解 AA的生物转化,放大了目前的冲突,在这方面的研究的作用, 磺基转移酶和硝基还原酶在诱导AA毒性中的作用阻止了这种策略的发展。 这一建议建立在我们在早期研究中获得的两个重要发现的基础上。利用一个完整的人类“肝脏- 在“芯片上的肾”系统中,我们报道了AA的激活发生在肝脏以及肾脏中。我们也 发现新的还原酶可能对AA代谢和毒性很重要。因此,这一目标 研究的目的是评估新的还原酶在AA代谢和毒性中的作用,并解决一个有争议的问题。 磺基转移酶和硝基还原酶参与人肝脏和肾脏中AA的生物活化。 为了实现这些目标,我们在人类肝脏中采用了靶向CRISPR/CAS9基因组编辑方法。 HepG 2和肾HK-2细胞系在涉及pupil的基因中产生双等位基因移码突变 在AA代谢中的作用。工程化细胞系将根据其对AA的敏感性进行评估,并与 各自的亲本细胞。质谱和DNA后标记技术将被应用于定量 AA及其DNA加合物的主要代谢产物。表达相应野生型和 将使用无催化活性的蛋白质转化敲除细胞系,以验证 在AA毒性中的特殊酶功能。为了支持在培养细胞中的发现, 将研究蛋白质和细胞裂解物对AA和N-羟基马兜铃内酰胺(AA的已知代谢物)的作用。 本研究的成功完成将为建立AA生物转化相关的新基因奠定基础。这 这些信息将为临床科学家提供设计治疗方法的信息, 暴露,并将有助于确定有发生AA相关疾病风险的个体。鉴于全球 由于暴露于AA,这项研究对全球公共卫生具有重大影响。最后,在细胞中产生的细胞系 我们的研究将可用于其他人类致癌物,毒素和药物的研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Viktoriya S Sidorenko其他文献

Viktoriya S Sidorenko的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Viktoriya S Sidorenko', 18)}}的其他基金

Molecular and cellular mechanisms underlying the carcinogenicity and nephrotoxicity of aristolochic acid: hallmarks of a global environmental disease
马兜铃酸致癌性和肾毒性的分子和细胞机制:全球环境疾病的标志
  • 批准号:
    10005592
  • 财政年份:
    2019
  • 资助金额:
    $ 19.94万
  • 项目类别:

相似海外基金

Linkage of HIV amino acid variants to protective host alleles at CHD1L and HLA class I loci in an African population
非洲人群中 HIV 氨基酸变异与 CHD1L 和 HLA I 类基因座的保护性宿主等位基因的关联
  • 批准号:
    502556
  • 财政年份:
    2024
  • 资助金额:
    $ 19.94万
  • 项目类别:
Olfactory Epithelium Responses to Human APOE Alleles
嗅觉上皮对人类 APOE 等位基因的反应
  • 批准号:
    10659303
  • 财政年份:
    2023
  • 资助金额:
    $ 19.94万
  • 项目类别:
Deeply analyzing MHC class I-restricted peptide presentation mechanistics across alleles, pathways, and disease coupled with TCR discovery/characterization
深入分析跨等位基因、通路和疾病的 MHC I 类限制性肽呈递机制以及 TCR 发现/表征
  • 批准号:
    10674405
  • 财政年份:
    2023
  • 资助金额:
    $ 19.94万
  • 项目类别:
An off-the-shelf tumor cell vaccine with HLA-matching alleles for the personalized treatment of advanced solid tumors
具有 HLA 匹配等位基因的现成肿瘤细胞疫苗,用于晚期实体瘤的个性化治疗
  • 批准号:
    10758772
  • 财政年份:
    2023
  • 资助金额:
    $ 19.94万
  • 项目类别:
Identifying genetic variants that modify the effect size of ApoE alleles on late-onset Alzheimer's disease risk
识别改变 ApoE 等位基因对迟发性阿尔茨海默病风险影响大小的遗传变异
  • 批准号:
    10676499
  • 财政年份:
    2023
  • 资助金额:
    $ 19.94万
  • 项目类别:
New statistical approaches to mapping the functional impact of HLA alleles in multimodal complex disease datasets
绘制多模式复杂疾病数据集中 HLA 等位基因功能影响的新统计方法
  • 批准号:
    2748611
  • 财政年份:
    2022
  • 资助金额:
    $ 19.94万
  • 项目类别:
    Studentship
Genome and epigenome editing of induced pluripotent stem cells for investigating osteoarthritis risk alleles
诱导多能干细胞的基因组和表观基因组编辑用于研究骨关节炎风险等位基因
  • 批准号:
    10532032
  • 财政年份:
    2022
  • 资助金额:
    $ 19.94万
  • 项目类别:
Recessive lethal alleles linked to seed abortion and their effect on fruit development in blueberries
与种子败育相关的隐性致死等位基因及其对蓝莓果实发育的影响
  • 批准号:
    22K05630
  • 财政年份:
    2022
  • 资助金额:
    $ 19.94万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Investigating the Effect of APOE Alleles on Neuro-Immunity of Human Brain Borders in Normal Aging and Alzheimer's Disease Using Single-Cell Multi-Omics and In Vitro Organoids
使用单细胞多组学和体外类器官研究 APOE 等位基因对正常衰老和阿尔茨海默病中人脑边界神经免疫的影响
  • 批准号:
    10525070
  • 财政年份:
    2022
  • 资助金额:
    $ 19.94万
  • 项目类别:
Leveraging the Evolutionary History to Improve Identification of Trait-Associated Alleles and Risk Stratification Models in Native Hawaiians
利用进化历史来改进夏威夷原住民性状相关等位基因的识别和风险分层模型
  • 批准号:
    10689017
  • 财政年份:
    2022
  • 资助金额:
    $ 19.94万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了