High-throughput identification of causal variants underlying cardiac arrhythmia-related GWAS hits
高通量识别心律失常相关 GWAS 命中的因果变异
基本信息
- 批准号:10191029
- 负责人:
- 金额:$ 72.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAffinityArrhythmiaBar CodesBindingBinding SitesBiological AssayCardiacCardiac MyocytesChromatinClinicalComplementDNADataDependovirusDiagnosisDiseaseElectrocardiogramEnhancersEtiologyEvaluationFutureGene ExpressionGenesGenomic SegmentGenotype-Tissue Expression ProjectGoalsHeartHeart DiseasesHumanHuman ActivitiesHuman GenomeIndividualIon ChannelKnowledgeLeadLibrariesLinkage DisequilibriumLocationLogicMapsMeasuresMediatingMusMutationNucleotidesPaired ComparisonPatientsPlayProcessProtein MicrochipsProteinsRegulatory ElementReporterReporter GenesResolutionRoleTechniquesTechnologyTissuesTranscriptUntranslated RNAVariantbasecausal variantdisorder riskfallsgenetic disorder diagnosisgenome wide association studygenome-wideheart disease riskhuman dataimprovedin vivoindividual patientinduced pluripotent stem cellinterestnew technologynovelpromoterrare variantrisk stratificationsudden cardiac deathtraittranscription factortranscriptome sequencing
项目摘要
Project Summary
Cardiac arrhythmias are a major clinical problem and can predispose to sudden cardiac death. Genome-
wide association studies (GWAS) have identified a growing number of sequence variants associated with cardiac
arrhythmias and related electrocardiogram (ECG) traits, but the majority of these GWAS hits fall within non-
coding regions and their functional effects are difficult to decipher. We hypothesize that the majority of functional
non-coding variants related to cardiac arrhythmias fall within cardiac cis-regulatory elements (CREs; i.e.,
enhancers/promoters), and exert their effects by disrupting transcription factor (TF) binding sites and thereby
altering the expression level of genes encoding cardiac proteins, especially ion channels and their regulators.
To identify causal variants underlying cardiac arrhythmia-related GWAS hits and to map arrhythmia-related
CREs, we propose to implement a technique called CRE-seq (Cis-Regulatory Element analysis by sequencing).
In CRE-seq, individual CREs are fused to reporter genes, each containing a unique DNA barcode. The resultant
CRE-reporter library, consisting of thousands of constructs, is introduced into living tissue, and reporter gene
expression is quantified by counting barcoded transcripts with RNA-seq. CRE-seq promises to greatly accelerate
our ability to measure the effects of cis-regulatory variants in cardiac disease. To achieve this goal, we propose
two Specific Aims. In Aim 1, we will use CRE-seq to identify causal cis-regulatory variants at all known GWAS
loci associated with cardiac arrhythmias and related traits. We will measure the cis-regulatory activity of
thousands of wild-type and variant CREs in mouse heart in vivo and in human iPSC-derived cardiomyocytes via
adeno-associated virus (AAV)-mediated CRE-seq library delivery. We will then evaluate the functional effects of
selected variants on TF binding using protein-microarrays containing all known human TFs. Lastly, we will
correlate the results of our CRE-seq analyses with cardiac eQTL data. In Aim 2, we will establish a template for
interpreting rare arrhythmia-related variants by mapping the location of human cardiac CREs and elucidating
their cis-regulatory logic. We will utilize a 'capture and clone' strategy for CRE-seq library construction, which
permits analysis of long (i.e., ~500 bp) tiled reporters at each locus. In this way, we will pinpoint essential TF
binding sites (TFBSs) which are the likely targets of rare functional variants. Next, we will use CRE-seq to analyze
the effects of introducing all possible single-nucleotide substitutions into identified TFBSs. As in Aim 1, we will
perform CRE-seq in both mouse heart and human iPSC-derived cardiomyocytes. Taken together, these two
Aims will enable functional interpretation of both common and rare variants in individual human genomes and
thereby facilitate assessment of cardiac disease risk in patients.
项目摘要
心律失常是一个主要的临床问题,易导致心脏性猝死。基因组-
广谱关联研究发现了越来越多与心脏疾病相关的序列变异。
心律失常和相关的心电图(ECG)特征,但这些GWA中的大多数属于非
编码区及其功能效应很难破译。我们假设大多数功能性的
与心律失常相关的非编码变体落入心脏顺式调节元件(CRE;即,
增强子/启动子),并通过破坏转录因子(TF)结合位点发挥它们的作用,从而
改变编码心脏蛋白的基因的表达水平,特别是离子通道及其调节因子。
识别与心律失常相关的GWAITS的原因变异,并绘制与心律失常相关的图谱
CRES,我们建议实施一种称为CRE-SEQ(顺式-顺式序列调控元件分析)的技术。
在Cre-seq中,单个CRE与报告基因融合,每个基因包含一个唯一的DNA条形码。由此产生的
Cre-Report文库由数千个构建体组成,被引入到活体组织中,报告基因
通过用RNA-seq计数条码转录本来量化表达。CRE-SEQ承诺大大加快
我们测量心脏疾病中顺式调控变异效应的能力。为了实现这一目标,我们建议
有两个明确的目标。在目标1中,我们将使用cre-seq在所有已知的GWAs中识别因果顺式调控变体
与心律失常相关的基因座及相关特征。我们将衡量顺式监管活动
数以千计的野生型和变异型Cre在小鼠心脏和人iPSC来源的心肌细胞中通过
腺相关病毒(AAV)介导的Cre-seq文库传递。然后,我们将评估其功能效果
使用包含所有已知人类TF的蛋白质微阵列对TF结合的选定变体。最后,我们将
将我们的CRE-SEQ分析结果与心脏eQTL数据相关联。在目标2中,我们将为
通过定位和阐明人类心脏核心蛋白基因的位置来解释罕见的心律失常相关变异
他们的顺势监管逻辑。我们将利用“捕获和克隆”策略构建cre-seq文库。
允许分析每个地点的长(即~500个BP)平铺记者。通过这种方式,我们将精确定位Essential Tf
结合位点(TFBs)是稀有功能变异的可能靶点。接下来,我们将使用CRE-seq来分析
将所有可能的单核苷酸替换引入已鉴定的TFBs的效果。在目标1中,我们将
在小鼠心脏和人IPSC来源的心肌细胞中进行CRE-seq。加在一起,这两个
AIMS将使对单个人类基因组中常见和罕见变异的功能解释成为可能
从而便于评估患者的心脏病风险。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JOSEPH CORBO其他文献
JOSEPH CORBO的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JOSEPH CORBO', 18)}}的其他基金
Targeting Nr2e3 to prevent photoreceptor degeneration
靶向 Nr2e3 预防光感受器变性
- 批准号:
10587113 - 财政年份:2023
- 资助金额:
$ 72.45万 - 项目类别:
High-throughput identification of causal variants underlying neuropsychiatric disease-related GWAS hits
高通量鉴定神经精神疾病相关 GWAS 命中的因果变异
- 批准号:
10339452 - 财政年份:2020
- 资助金额:
$ 72.45万 - 项目类别:
High-throughput identification of causal variants underlying cardiac arrhythmia-related GWAS hits
高通量识别心律失常相关 GWAS 命中的因果变异
- 批准号:
10615090 - 财政年份:2020
- 资助金额:
$ 72.45万 - 项目类别:
High-throughput identification of causal variants underlying cardiac arrhythmia-related GWAS hits
高通量识别心律失常相关 GWAS 命中的因果变异
- 批准号:
10397430 - 财政年份:2020
- 资助金额:
$ 72.45万 - 项目类别:
High-throughput identification of causal variants underlying neuropsychiatric disease-related GWAS hits
高通量鉴定神经精神疾病相关 GWAS 命中的因果变异
- 批准号:
10569114 - 财政年份:2020
- 资助金额:
$ 72.45万 - 项目类别:
Elucidating the cis-regulatory grammar of human photoreceptors
阐明人类光感受器的顺式调节语法
- 批准号:
10372052 - 财政年份:2020
- 资助金额:
$ 72.45万 - 项目类别:
Elucidating the cis-regulatory grammar of human photoreceptors
阐明人类光感受器的顺式调节语法
- 批准号:
10601005 - 财政年份:2020
- 资助金额:
$ 72.45万 - 项目类别:
DECIPHERING THE MECHANISTIC BASIS OF INFRARED VISION FOR OPTOGENETIC APPLICATIONS
破译红外视觉光遗传学应用的机制基础
- 批准号:
9082683 - 财政年份:2016
- 资助金额:
$ 72.45万 - 项目类别:
DISSECTING THE CIS-REGULATORY ARCHITECTURE OF THE RETINA BY EPIGENOMIC PROFILING
通过表观基因组分析剖析视网膜的 CIS 调控架构
- 批准号:
9043099 - 财政年份:2015
- 资助金额:
$ 72.45万 - 项目类别:
CONVERTING BIPOLAR CELLS INTO RED-SHIFTED OPTOGENETIC SENSORS FOR RETINAL THERAPY
将双极细胞转化为红移光遗传学传感器用于视网膜治疗
- 批准号:
8989104 - 财政年份:2015
- 资助金额:
$ 72.45万 - 项目类别:
相似海外基金
Construction of affinity sensors using high-speed oscillation of nanomaterials
利用纳米材料高速振荡构建亲和传感器
- 批准号:
23H01982 - 财政年份:2023
- 资助金额:
$ 72.45万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Affinity evaluation for development of polymer nanocomposites with high thermal conductivity and interfacial molecular design
高导热率聚合物纳米复合材料开发和界面分子设计的亲和力评估
- 批准号:
23KJ0116 - 财政年份:2023
- 资助金额:
$ 72.45万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Development of High-Affinity and Selective Ligands as a Pharmacological Tool for the Dopamine D4 Receptor (D4R) Subtype Variants
开发高亲和力和选择性配体作为多巴胺 D4 受体 (D4R) 亚型变体的药理学工具
- 批准号:
10682794 - 财政年份:2023
- 资助金额:
$ 72.45万 - 项目类别:
Platform for the High Throughput Generation and Validation of Affinity Reagents
用于高通量生成和亲和试剂验证的平台
- 批准号:
10598276 - 财政年份:2023
- 资助金额:
$ 72.45万 - 项目类别:
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233343 - 财政年份:2023
- 资助金额:
$ 72.45万 - 项目类别:
Standard Grant
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233342 - 财政年份:2023
- 资助金额:
$ 72.45万 - 项目类别:
Standard Grant
Molecular mechanisms underlying high-affinity and isotype switched antibody responses
高亲和力和同种型转换抗体反应的分子机制
- 批准号:
479363 - 财政年份:2023
- 资助金额:
$ 72.45万 - 项目类别:
Operating Grants
Deconstructed T cell antigen recognition: Separation of affinity from bond lifetime
解构 T 细胞抗原识别:亲和力与键寿命的分离
- 批准号:
10681989 - 财政年份:2023
- 资助金额:
$ 72.45万 - 项目类别:
CAREER: Engineered Affinity-Based Biomaterials for Harnessing the Stem Cell Secretome
职业:基于亲和力的工程生物材料用于利用干细胞分泌组
- 批准号:
2237240 - 财政年份:2023
- 资助金额:
$ 72.45万 - 项目类别:
Continuing Grant
ADVANCE Partnership: Leveraging Intersectionality and Engineering Affinity groups in Industrial Engineering and Operations Research (LINEAGE)
ADVANCE 合作伙伴关系:利用工业工程和运筹学 (LINEAGE) 领域的交叉性和工程亲和力团体
- 批准号:
2305592 - 财政年份:2023
- 资助金额:
$ 72.45万 - 项目类别:
Continuing Grant














{{item.name}}会员




