High-throughput identification of causal variants underlying cardiac arrhythmia-related GWAS hits
高通量识别心律失常相关 GWAS 命中的因果变异
基本信息
- 批准号:10397430
- 负责人:
- 金额:$ 72.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAffinityArrhythmiaBar CodesBindingBinding SitesBiological AssayCardiacCardiac MyocytesChromatinClinicalComplementDNADataDependovirusDiagnosisDiseaseElectrocardiogramEnhancersEtiologyEvaluationFutureGene ExpressionGenesGenomic SegmentGenotype-Tissue Expression ProjectGoalsHeartHeart DiseasesHumanHuman ActivitiesHuman GenomeIndividualIon ChannelKnowledgeLeadLibrariesLinkage DisequilibriumLocationLogicMapsMeasuresMediatingMusMutationNucleotidesPaired ComparisonPatientsPlayProcessProtein MicrochipsProteinsRegulatory ElementReporterReporter GenesResolutionRoleTechniquesTechnologyTissuesTranscriptUntranslated RNAVariantbasecausal variantdisorder riskfallsgenetic disorder diagnosisgenome wide association studygenome-wideheart disease riskhuman dataimprovedin vivoindividual patientinduced pluripotent stem cell derived cardiomyocytesinterestnew technologynovelpromoterrare variantrisk stratificationsudden cardiac deathtraittranscription factortranscriptome sequencing
项目摘要
Project Summary
Cardiac arrhythmias are a major clinical problem and can predispose to sudden cardiac death. Genome-
wide association studies (GWAS) have identified a growing number of sequence variants associated with cardiac
arrhythmias and related electrocardiogram (ECG) traits, but the majority of these GWAS hits fall within non-
coding regions and their functional effects are difficult to decipher. We hypothesize that the majority of functional
non-coding variants related to cardiac arrhythmias fall within cardiac cis-regulatory elements (CREs; i.e.,
enhancers/promoters), and exert their effects by disrupting transcription factor (TF) binding sites and thereby
altering the expression level of genes encoding cardiac proteins, especially ion channels and their regulators.
To identify causal variants underlying cardiac arrhythmia-related GWAS hits and to map arrhythmia-related
CREs, we propose to implement a technique called CRE-seq (Cis-Regulatory Element analysis by sequencing).
In CRE-seq, individual CREs are fused to reporter genes, each containing a unique DNA barcode. The resultant
CRE-reporter library, consisting of thousands of constructs, is introduced into living tissue, and reporter gene
expression is quantified by counting barcoded transcripts with RNA-seq. CRE-seq promises to greatly accelerate
our ability to measure the effects of cis-regulatory variants in cardiac disease. To achieve this goal, we propose
two Specific Aims. In Aim 1, we will use CRE-seq to identify causal cis-regulatory variants at all known GWAS
loci associated with cardiac arrhythmias and related traits. We will measure the cis-regulatory activity of
thousands of wild-type and variant CREs in mouse heart in vivo and in human iPSC-derived cardiomyocytes via
adeno-associated virus (AAV)-mediated CRE-seq library delivery. We will then evaluate the functional effects of
selected variants on TF binding using protein-microarrays containing all known human TFs. Lastly, we will
correlate the results of our CRE-seq analyses with cardiac eQTL data. In Aim 2, we will establish a template for
interpreting rare arrhythmia-related variants by mapping the location of human cardiac CREs and elucidating
their cis-regulatory logic. We will utilize a 'capture and clone' strategy for CRE-seq library construction, which
permits analysis of long (i.e., ~500 bp) tiled reporters at each locus. In this way, we will pinpoint essential TF
binding sites (TFBSs) which are the likely targets of rare functional variants. Next, we will use CRE-seq to analyze
the effects of introducing all possible single-nucleotide substitutions into identified TFBSs. As in Aim 1, we will
perform CRE-seq in both mouse heart and human iPSC-derived cardiomyocytes. Taken together, these two
Aims will enable functional interpretation of both common and rare variants in individual human genomes and
thereby facilitate assessment of cardiac disease risk in patients.
项目概要
心律失常是一个主要的临床问题,可能导致心源性猝死。基因组-
广泛关联研究(GWAS)已发现越来越多与心脏相关的序列变异
心律失常和相关心电图 (ECG) 特征,但这些 GWAS 命中中的大多数属于非
编码区及其功能作用很难破译。我们假设大多数功能
与心律失常相关的非编码变异属于心脏顺式调节元件(CRE;即
增强子/启动子),并通过破坏转录因子(TF)结合位点发挥其作用,从而
改变编码心脏蛋白的基因的表达水平,特别是离子通道及其调节因子。
识别心律失常相关 GWAS 命中的因果变异并绘制心律失常相关图谱
CRE,我们建议实施一种称为 CRE-seq(顺式调控元件测序分析)的技术。
在 CRE-seq 中,各个 CRE 与报告基因融合,每个基因都包含独特的 DNA 条形码。由此产生的
CRE-报告文库由数千个构建体组成,被引入活体组织和报告基因
通过使用 RNA-seq 对带有条形码的转录本进行计数来量化表达。 CRE-seq有望大大加速
我们有能力测量顺式调节变异对心脏病的影响。为了实现这一目标,我们建议
两个具体目标。在目标 1 中,我们将使用 CRE-seq 来识别所有已知 GWAS 中的因果顺式调控变异
与心律失常和相关特征相关的基因座。我们将衡量顺式监管活动
小鼠心脏体内和人 iPSC 衍生的心肌细胞中数千个野生型和变异 CRE
腺相关病毒(AAV)介导的CRE-seq文库交付。然后我们将评估功能效果
使用包含所有已知人类 TF 的蛋白质微阵列选择 TF 结合的变体。最后,我们将
将我们的 CRE-seq 分析结果与心脏 eQTL 数据关联起来。在目标 2 中,我们将建立一个模板
通过绘制人类心脏 CRE 的位置并阐明来解释罕见的心律失常相关变异
他们的顺式监管逻辑。我们将利用“捕获和克隆”策略进行 CRE-seq 文库构建,这
允许分析每个位点的长(即~500 bp)平铺报告基因。这样我们就可以找到必要的TF
结合位点(TFBS)是罕见功能变异的可能目标。接下来我们将使用CRE-seq来分析
将所有可能的单核苷酸取代引入已识别的 TFBS 中的效果。正如目标 1 一样,我们将
在小鼠心脏和人 iPSC 衍生的心肌细胞中进行 CRE-seq。综合起来,这两个
目标将能够对人类个体基因组中常见和罕见的变异进行功能解释,
从而有助于评估患者的心脏病风险。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JOSEPH CORBO其他文献
JOSEPH CORBO的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JOSEPH CORBO', 18)}}的其他基金
Targeting Nr2e3 to prevent photoreceptor degeneration
靶向 Nr2e3 预防光感受器变性
- 批准号:
10587113 - 财政年份:2023
- 资助金额:
$ 72.27万 - 项目类别:
High-throughput identification of causal variants underlying cardiac arrhythmia-related GWAS hits
高通量识别心律失常相关 GWAS 命中的因果变异
- 批准号:
10615090 - 财政年份:2020
- 资助金额:
$ 72.27万 - 项目类别:
High-throughput identification of causal variants underlying neuropsychiatric disease-related GWAS hits
高通量鉴定神经精神疾病相关 GWAS 命中的因果变异
- 批准号:
10339452 - 财政年份:2020
- 资助金额:
$ 72.27万 - 项目类别:
High-throughput identification of causal variants underlying neuropsychiatric disease-related GWAS hits
高通量鉴定神经精神疾病相关 GWAS 命中的因果变异
- 批准号:
10569114 - 财政年份:2020
- 资助金额:
$ 72.27万 - 项目类别:
High-throughput identification of causal variants underlying cardiac arrhythmia-related GWAS hits
高通量识别心律失常相关 GWAS 命中的因果变异
- 批准号:
10191029 - 财政年份:2020
- 资助金额:
$ 72.27万 - 项目类别:
Elucidating the cis-regulatory grammar of human photoreceptors
阐明人类光感受器的顺式调节语法
- 批准号:
10372052 - 财政年份:2020
- 资助金额:
$ 72.27万 - 项目类别:
Elucidating the cis-regulatory grammar of human photoreceptors
阐明人类光感受器的顺式调节语法
- 批准号:
10601005 - 财政年份:2020
- 资助金额:
$ 72.27万 - 项目类别:
DECIPHERING THE MECHANISTIC BASIS OF INFRARED VISION FOR OPTOGENETIC APPLICATIONS
破译红外视觉光遗传学应用的机制基础
- 批准号:
9082683 - 财政年份:2016
- 资助金额:
$ 72.27万 - 项目类别:
DISSECTING THE CIS-REGULATORY ARCHITECTURE OF THE RETINA BY EPIGENOMIC PROFILING
通过表观基因组分析剖析视网膜的 CIS 调控架构
- 批准号:
9043099 - 财政年份:2015
- 资助金额:
$ 72.27万 - 项目类别:
CONVERTING BIPOLAR CELLS INTO RED-SHIFTED OPTOGENETIC SENSORS FOR RETINAL THERAPY
将双极细胞转化为红移光遗传学传感器用于视网膜治疗
- 批准号:
8989104 - 财政年份:2015
- 资助金额:
$ 72.27万 - 项目类别:
相似海外基金
Construction of affinity sensors using high-speed oscillation of nanomaterials
利用纳米材料高速振荡构建亲和传感器
- 批准号:
23H01982 - 财政年份:2023
- 资助金额:
$ 72.27万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Affinity evaluation for development of polymer nanocomposites with high thermal conductivity and interfacial molecular design
高导热率聚合物纳米复合材料开发和界面分子设计的亲和力评估
- 批准号:
23KJ0116 - 财政年份:2023
- 资助金额:
$ 72.27万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Platform for the High Throughput Generation and Validation of Affinity Reagents
用于高通量生成和亲和试剂验证的平台
- 批准号:
10598276 - 财政年份:2023
- 资助金额:
$ 72.27万 - 项目类别:
Development of High-Affinity and Selective Ligands as a Pharmacological Tool for the Dopamine D4 Receptor (D4R) Subtype Variants
开发高亲和力和选择性配体作为多巴胺 D4 受体 (D4R) 亚型变体的药理学工具
- 批准号:
10682794 - 财政年份:2023
- 资助金额:
$ 72.27万 - 项目类别:
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233343 - 财政年份:2023
- 资助金额:
$ 72.27万 - 项目类别:
Standard Grant
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233342 - 财政年份:2023
- 资助金额:
$ 72.27万 - 项目类别:
Standard Grant
Molecular mechanisms underlying high-affinity and isotype switched antibody responses
高亲和力和同种型转换抗体反应的分子机制
- 批准号:
479363 - 财政年份:2023
- 资助金额:
$ 72.27万 - 项目类别:
Operating Grants
Deconstructed T cell antigen recognition: Separation of affinity from bond lifetime
解构 T 细胞抗原识别:亲和力与键寿命的分离
- 批准号:
10681989 - 财政年份:2023
- 资助金额:
$ 72.27万 - 项目类别:
CAREER: Engineered Affinity-Based Biomaterials for Harnessing the Stem Cell Secretome
职业:基于亲和力的工程生物材料用于利用干细胞分泌组
- 批准号:
2237240 - 财政年份:2023
- 资助金额:
$ 72.27万 - 项目类别:
Continuing Grant
ADVANCE Partnership: Leveraging Intersectionality and Engineering Affinity groups in Industrial Engineering and Operations Research (LINEAGE)
ADVANCE 合作伙伴关系:利用工业工程和运筹学 (LINEAGE) 领域的交叉性和工程亲和力团体
- 批准号:
2305592 - 财政年份:2023
- 资助金额:
$ 72.27万 - 项目类别:
Continuing Grant














{{item.name}}会员




