Spread and Release of Measles in the Airways
麻疹在呼吸道中的传播和释放
基本信息
- 批准号:10190793
- 负责人:
- 金额:$ 52.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAlveolarAnimal ModelAnimalsAntiviral AgentsAntiviral ResponseApicalApoptosisAutophagocytosisBenignBiological ModelsCell DeathCell LineCell ProliferationCell membraneCell modelCell surfaceCellsChildChildhoodClinicalContractsCoughingDataDiseaseEnvironmentEpithelialEpithelial CellsEuropeEventExanthemaF-ActinFrequenciesGenesGiant CellsGoalsGrowthHerd ImmunityHourHumanInfectionInnate Immune ResponseInterferonsIrrigationKnowledgeLabelLaboratoriesLasersLeadLinkLymphatic SystemMacacaMacaca mulattaMapsMeaslesMeasles virusMediatingMicroscopicModelingModificationMonitorMovementPathologyPathway interactionsPhysiologicalProcessProteinsReportingResearchRoleRuptureSentinelSeriesSneezingStructure of respiratory epitheliumSurfaceTestingTimeVaccinationViral PathogenesisViremiaVirionVirusVirus DiseasesWorkairway epitheliumbasebasolateral membranecell immortalizationcontagiondeep sequencinggenetic approachhuman modelimprovedin vitro Modelin vivoinhibitor/antagonistinnovationinsightnectinnonhuman primatepathogenpathogenic viruspreferenceprogramsreceptorrespiratory virusresponsetransmission processtreadmillvector
项目摘要
PROJECT SUMMARY:
Humans are the only natural reservoir for the extremely contagious measles virus (MeV). Thus, a critical
challenge for MeV study is identification of representative human model systems. For decades, MeV was
thought to enter the human host through the apical surface of airway cells, a misconception based on studies
in immortalized cell lines. Well-differentiated primary cultures of airways epithelial cells from human donors
(HAE) provide a more physiological relevant model of human airways. Using HAE, we found that MeV
exclusively enters the basolateral membrane. This observation lead to a completely new paradigm for how
MeV enters the human host. In addition to basolateral entry, we observed that MeV infection of HAE results in
the formation of infectious centers that retain intact plasma membranes and are substantially different than
the syncytia observed in immortalized cells. Infectious centers differ from syncytia in two important ways: 1)
infectious centers stop growing 3-4 days post-infection and 2) infectious centers disappear after ~10 days
leaving the cell layer intact. Why infectious centers stop growing and how they disappear in HAE remain a
mystery and is the focus of this application. We hypothesize that infectious center formation in the respiratory
epithelium is a vital step in the final amplification process before release to the next host. In Aim 1, we define
the innate immune response pathways in the airways. We quantify 14 antiviral sentinel genes at 12 timepoints
ranging from 6 hours to 2 weeks. In addition, laser capture of infectious centers is used to isolate infected cells
from uninfected cells within an epithelial sheet and deep sequencing is used to map the cellular response to
MeV. In Aim 2, we address how MeV is released from HAE. Preliminary data suggest that infectious centers
are shed, intact, from the HAE (rather than rupturing). The timecourse and frequency of shedding will be
defined. The roles of cell proliferation and cell death pathways will be probed by cell labeling to discern how
large infectious centers can be released yet the epithelial integrity is maintained. MeV mediated cytoskeletal
modifications are likely to be mechanistically involved in infectious center release, which we test using
inhibitors of F-actin treadmilling. In Aim 3, we hypothesize that shed infectious centers are physiologically
relevant vectors for MeV delivery. We will deliver cell-associated and cell-free MeV to the airways of rhesus
macaques and quantify the time-course of infection. This aim has the potential to reshape a fundamental
dogma of how MeV is spread host-to-host. In summary, these studies use an appropriate model system to
study MeV entry, spread, and luminal release. Our research will elucidate mechanisms by which the most
contagious human respiratory virus undergoes its final amplification step before release to its next host.
项目概要:
人类是传染性极强的麻疹病毒(MeV)的唯一天然宿主。因此,一个关键的
MeV 研究的挑战是识别代表性的人体模型系统。几十年来,MeV
人们认为通过气道细胞的顶端表面进入人类宿主,这是基于研究的误解
在永生化细胞系中。来自人类供体的气道上皮细胞的分化良好的原代培养物
(HAE)提供了与人体气道更加生理相关的模型。使用 HAE,我们发现 MeV
完全进入基底外侧膜。这一观察结果带来了一个全新的范式
MeV进入人类宿主。除了基底外侧进入之外,我们还观察到 HAE 的 MeV 感染会导致
保留完整质膜的感染中心的形成与
在永生化细胞中观察到的合胞体。感染中心与合胞体有两个重要的不同之处:1)
感染中心在感染后 3-4 天停止生长,2) 感染中心在约 10 天后消失
保持细胞层完整。为什么传染中心停止增长以及它们如何在 HAE 中消失仍然是一个问题
神秘,是这个应用程序的重点。我们假设呼吸道感染中心的形成
上皮细胞是释放到下一个宿主之前的最终扩增过程中至关重要的一步。在目标 1 中,我们定义
气道中的先天免疫反应途径。我们在 12 个时间点量化了 14 个抗病毒前哨基因
6小时至2周不等。此外,利用激光捕获感染中心来分离受感染的细胞
来自上皮片内未感染的细胞,并使用深度测序来绘制细胞反应
兆伏。在目标 2 中,我们讨论了如何从 HAE 中释放 MeV。初步数据表明,传染中心
完整地从 HAE 中脱落(而不是破裂)。脱落的时间和频率
定义的。将通过细胞标记来探究细胞增殖和细胞死亡途径的作用,以了解如何
大型感染中心可以被释放,但上皮完整性得以维持。 MeV介导的细胞骨架
修改可能在机械上涉及感染中心的释放,我们使用
F-肌动蛋白跑步机抑制剂。在目标 3 中,我们假设棚内传染中心在生理上是
MeV 传递的相关向量。我们将向恒河猴气道输送细胞相关和无细胞 MeV
猕猴并量化感染的时间过程。这一目标有可能重塑基本面
MeV 如何在主机之间传播的教条。总之,这些研究使用适当的模型系统来
研究 MeV 进入、传播和管腔释放。我们的研究将阐明最重要的机制
传染性人类呼吸道病毒在释放到下一个宿主之前要经历最后的扩增步骤。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
PATRICK L SINN其他文献
PATRICK L SINN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('PATRICK L SINN', 18)}}的其他基金
A Hybrid Viral/Nonviral Vector for CFTR Delivery to CF Pig Airways
用于 CFTR 递送至 CF 猪气道的混合病毒/非病毒载体
- 批准号:
9923461 - 财政年份:2017
- 资助金额:
$ 52.08万 - 项目类别:
Targeted integration of a DNA transposon-based nonviral vector
基于 DNA 转座子的非病毒载体的靶向整合
- 批准号:
8988595 - 财政年份:2012
- 资助金额:
$ 52.08万 - 项目类别:
Targeted integration of a DNA transposon-based nonviral vector
基于 DNA 转座子的非病毒载体的靶向整合
- 批准号:
8237293 - 财政年份:2012
- 资助金额:
$ 52.08万 - 项目类别:
Targeted integration of a DNA transposon-based nonviral vector
基于 DNA 转座子的非病毒载体的靶向整合
- 批准号:
8598929 - 财政年份:2012
- 资助金额:
$ 52.08万 - 项目类别:
Targeted integration of a DNA transposon-based nonviral vector
基于 DNA 转座子的非病毒载体的靶向整合
- 批准号:
8403682 - 财政年份:2012
- 资助金额:
$ 52.08万 - 项目类别:
相似海外基金
Gain-of-function toxicity in alpha-1 antitrypsin deficient type 2 alveolar epithelial cells
α-1 抗胰蛋白酶缺陷型 2 型肺泡上皮细胞的功能获得毒性
- 批准号:
10751760 - 财政年份:2024
- 资助金额:
$ 52.08万 - 项目类别:
The role of alveolar macrophages and regulatory pathways in post-transplant lung inflammation.
肺泡巨噬细胞和调节途径在移植后肺部炎症中的作用。
- 批准号:
23K08315 - 财政年份:2023
- 资助金额:
$ 52.08万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mechanical signaling through the nuclear membrane in lung alveolar health
通过核膜的机械信号传导影响肺泡健康
- 批准号:
10677169 - 财政年份:2023
- 资助金额:
$ 52.08万 - 项目类别:
Mechanistic studies of the genetic contribution of desmoplakin to pulmonary fibrosis in alveolar type 2 cells
桥粒斑蛋白对肺泡2型细胞肺纤维化的遗传贡献机制研究
- 批准号:
10736228 - 财政年份:2023
- 资助金额:
$ 52.08万 - 项目类别:
Pilot Studies of PAX3-FOXO1 Fusions Proteins in Alveolar Rhabdomyosarcoma
PAX3-FOXO1 融合蛋白在肺泡横纹肌肉瘤中的初步研究
- 批准号:
10726763 - 财政年份:2023
- 资助金额:
$ 52.08万 - 项目类别:
Novel alveolar mechanisms of hypoxemia in hepatopulmonary syndrome
肝肺综合征低氧血症的新肺泡机制
- 批准号:
10718446 - 财政年份:2023
- 资助金额:
$ 52.08万 - 项目类别:
Utilizing induced pluripotent stem cells to study the role of alveolar type 2 cell dysfunction in pulmonary fibrosis
利用诱导多能干细胞研究肺泡2型细胞功能障碍在肺纤维化中的作用
- 批准号:
10591174 - 财政年份:2023
- 资助金额:
$ 52.08万 - 项目类别:
Injury of blood brain and alveolar-endothelial barriers caused by alcohol and electronic cigarettes via purinergic receptor signaling
酒精和电子烟通过嘌呤受体信号传导引起血脑和肺泡内皮屏障损伤
- 批准号:
10638221 - 财政年份:2023
- 资助金额:
$ 52.08万 - 项目类别:
Alveolar Epithelial Cell Dysfunction Induced By Flavored E-Cigarette Aerosols
加味电子烟气雾剂引起的肺泡上皮细胞功能障碍
- 批准号:
10770080 - 财政年份:2023
- 资助金额:
$ 52.08万 - 项目类别:
Delineating the role of let-7 microRNA on lung AT2 cell homeostasis, alveolar regeneration, and interstitial lung disease
描述let-7 microRNA对肺AT2细胞稳态、肺泡再生和间质性肺疾病的作用
- 批准号:
10634881 - 财政年份:2023
- 资助金额:
$ 52.08万 - 项目类别:














{{item.name}}会员




