Modulating 3D Cellular Connectivity Via Spatially-Controlled Programmable Bonding
通过空间控制的可编程绑定调节 3D 蜂窝连接
基本信息
- 批准号:10195452
- 负责人:
- 金额:$ 21.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:3-Dimensional3D PrintAddressAnimal ModelAreaBase PairingBehaviorBiocompatible Coated MaterialsBiologicalBiological ProcessBiomedical ResearchCell CommunicationCell TherapyCellsChemical EngineeringChemicalsChemistryCicatrixCoculture TechniquesCommunicationComplexCuesDNADNA SequenceDegenerative DisorderDegenerative polyarthritisDevelopmentDevelopmental ProcessDiseaseEngineeringEnvironmentFutureGene ExpressionGerm CellsGoalsImmunologyIn VitroIndividualIntercellular JunctionsLeadLibrariesLocationMediatingMethodsModelingNanotechnologyNatural regenerationNeoplasm MetastasisOligonucleotidesPatternPlayPopulationPrintingProcessResearchResearch ProposalsResolutionRoleSignal TransductionSiteSurfaceSystemTechniquesTechnologyTestingTherapeuticTissue EngineeringTissuesVisionangiogenesisbasecell assemblycell behaviorcell typedesignmigrationmonolayernew technologynovel strategiesorgan regenerationprogramsresponsestem cell differentiationstem cellssuccesstumor progression
项目摘要
Project Summary
The hierarchical arrangement of cells within tissue plays an important role in determining function. As part of this
hierarchical arrangement, different cell types are spatially arranged in contact with one another in a way that
transmits important signaling cues that direct a multitude of different functional and dysfunctional cellular
responses, such as altered gene expression, migration, metabolite sharing, and survival. A greater
understanding of how cell arrangement impacts these behaviors would have important repercussions for a host
of developmental processes that include stem cell differentiation, cancer metastasis, scar tissue formation,
immunology, and angiogenesis. While the importance of spatially-regulated hierarchical cell arrangements is
well established, methods for reproducing this complexity with high precision remain limited. Conventionally,
model organisms have informed much of what is understood about these processes, but often do not allow
constant direct observation and control. Rapidly evolving 3D printing methods have greatly enhanced our ability
to place cells on substrates with libraries of different materials. However, these technologies do not allow one to
precisely place individual cells in contact with each other in order to understand how different arrangements drive
biological processes in highly heterogenous cell populations. Likewise, techniques that facilitate cell-cell contact
placement do not readily enable 3D control with multiple different cell types. This proposal seeks to establish the
feasibility of technology that would address this biomedical technological need. Specifically, it evaluates the use
of oligonucleotide (short DNA sequences) to precisely control cell placement in an interchangeable and on-the-
fly fashion. Aim 1 of this proposal seeks to establish new methods and design rules for dynamically and
sequentially adding multiple different cells to a surface with high fidelity and spatial control. Aim 2 seeks to
develop a new approach to building spatially controlled 3D cell assemblies using programmable DNA.
Completion of this proposal will establish feasibility of this technology for future applications in biomedical
studies.
项目摘要
组织内细胞的层级排列在决定功能方面起着重要作用。作为这项工作的一部分
分层排列,不同单元类型以如下方式彼此接触地在空间上排列
传递重要的信号信号,引导大量不同功能和功能障碍的细胞
反应,如基因表达改变、迁移、代谢物共享和生存。一个更伟大的
了解细胞排列如何影响这些行为将对宿主产生重要影响
发育过程包括干细胞分化,癌症转移,疤痕组织形成,
免疫学和血管生成。虽然空间调节的分层单元排列的重要性是
已经确立的、以高精度再现这种复杂性的方法仍然有限。按照惯例,
模式生物已经了解了许多关于这些过程的知识,但通常不允许
持续的直接观察和控制。快速发展的3D打印方法极大地增强了我们的能力
将单元放置在具有不同材质库的衬底上。然而,这些技术不允许人们
精确地将单个细胞相互接触,以了解不同的排列是如何驱动的
高度异质性细胞群体中的生物学过程。同样,促进细胞间接触的技术
放置不容易实现具有多种不同单元类型的3D控制。这项建议旨在建立
解决这一生物医学技术需求的技术的可行性。具体地说,它评估使用
使用寡核苷酸(短DNA序列)来精确控制细胞在可互换和在线的
时尚飞翔。本提案的目标1旨在建立新的方法和设计规则,以
将多个不同的单元顺序添加到高保真和空间控制的曲面上。《目标2》寻求
开发一种使用可编程DNA构建空间控制的3D细胞组件的新方法。
这项提案的完成将为这项技术在未来生物医学中的应用奠定可行性
学习。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brian R Meckes其他文献
Brian R Meckes的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brian R Meckes', 18)}}的其他基金
Mechanoregulators of Nanoparticle-Cell Interactions at Tissue Interfaces
组织界面纳米颗粒-细胞相互作用的机械调节器
- 批准号:
10714159 - 财政年份:2023
- 资助金额:
$ 21.04万 - 项目类别:
Modulating 3D Cellular Connectivity Via Spatially-Controlled Programmable Bonding
通过空间控制的可编程绑定调节 3D 蜂窝连接
- 批准号:
10471175 - 财政年份:2021
- 资助金额:
$ 21.04万 - 项目类别:
Scanning Ion Conductance Microscope-array for the Study of Ion Channel Clusters
用于研究离子通道簇的扫描离子电导显微镜阵列
- 批准号:
8457361 - 财政年份:2013
- 资助金额:
$ 21.04万 - 项目类别:
Scanning Ion Conductance Microscope-array for the Study of Ion Channel Clusters
用于研究离子通道簇的扫描离子电导显微镜阵列
- 批准号:
8607463 - 财政年份:2013
- 资助金额:
$ 21.04万 - 项目类别:
相似海外基金
Study on the use of 3D print models to improve understanding of geomorphic processes
研究使用 3D 打印模型来提高对地貌过程的理解
- 批准号:
22K13777 - 财政年份:2022
- 资助金额:
$ 21.04万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
3D print-on-demand technology for personalised medicines at the point of care
用于护理点个性化药物的 3D 按需打印技术
- 批准号:
10045111 - 财政年份:2022
- 资助金额:
$ 21.04万 - 项目类别:
Grant for R&D
Regenerative cooling optimisation in 3D-print rocket nozzles
3D 打印火箭喷嘴的再生冷却优化
- 批准号:
2749141 - 财政年份:2022
- 资助金额:
$ 21.04万 - 项目类别:
Studentship
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2021
- 资助金额:
$ 21.04万 - 项目类别:
College - University Idea to Innovation Grants
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2020
- 资助金额:
$ 21.04万 - 项目类别:
College - University Idea to Innovation Grants
Administrative Supplement for Equipment: 6-axis Positioner to Improve 3D Print Quality and Print Size
设备管理补充:用于提高 3D 打印质量和打印尺寸的 6 轴定位器
- 批准号:
10801667 - 财政年份:2019
- 资助金额:
$ 21.04万 - 项目类别:
SBIR Phase II: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第二阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1738138 - 财政年份:2017
- 资助金额:
$ 21.04万 - 项目类别:
Standard Grant
Development of "artificial muscle' ink for 3D print of microrobots
开发用于微型机器人3D打印的“人造肌肉”墨水
- 批准号:
17K18852 - 财政年份:2017
- 资助金额:
$ 21.04万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
I-Corps: Nanochon, a Commercial Venture to 3D Print Regenerative Implants for Joint Reconstruction
I-Corps:Nanochon,一家商业企业,致力于 3D 打印再生植入物进行关节重建
- 批准号:
1612567 - 财政年份:2016
- 资助金额:
$ 21.04万 - 项目类别:
Standard Grant
SBIR Phase I: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第一阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1621732 - 财政年份:2016
- 资助金额:
$ 21.04万 - 项目类别:
Standard Grant














{{item.name}}会员




