Using Road Traffic Data to Identify COVID-19 Priority Testing Locations in Southern California
使用道路交通数据确定南加州的 COVID-19 优先测试地点
基本信息
- 批准号:10196823
- 负责人:
- 金额:$ 14.37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsAreaCOVID-19COVID-19 testingCaliforniaCaringCountryCountyDataData Management ResourcesDestinationsDiagnosisDiseaseDisease modelElderlyEngineeringEpidemicFutureGuidelinesHealthIndividualInfectionLettersLightLiteratureLocationLos AngelesMaintenanceMeasuresMedicalMethodologyModelingNursing HomesPatientsPatternPoliciesPopulationPrevalencePublic HealthQuarantineRecommendationResearch PersonnelSiteSocial DistanceSocial EnvironmentSpeedStructural ModelsStructureSymptomsSystemTestingTimeTransportationTravelVaccinesWidespread DiseaseWorkarchive dataarchived datadisease transmissiondisorder controleffective therapyfluhealth traininghigh riskinfectious disease modelinsightmetropolitannetwork modelsnovelnovel strategiessensorsocialtransmission processurban area
项目摘要
1 Project Summary
2 Without a vaccine or effective treatment, there is an urgent need for performing widespread
3 COVID-19 testing to control disease spread. However, complete population testing is
4 prohibitively challenging as testing supplies are limited and require trained health staff which
5 could be better used in caring for those confirmed to be infected. It is therefore critical to focus
6 testing in high-priority areas, where tests are likely to capture positive cases. Identifying infected
7 individuals quickly as tests become more widely available will provide crucial information on
8 overall disease prevalence to inform future disease control efforts.
9 We can help identify areas of potentially high disease prevalence by synthesizing and using
10 traffic patterns, as transportation patterns may shed light on possible transmission patterns in
11 Los Angeles County (LAC). We propose using the USC Archived Data Management System
12 (ADMS), which collects and synthesizes traffic data, to create an epidemic model informed by
13 up-to-date origin-destination traffic information. We will use the model to identify which of the 26
14 health districts in LAC are at highest risk for unidentified cases and optimally locate testing sites
15 within these regions. This allows our recommendations to incorporate change in transportation
16 patterns as social distancing recommendations evolve. Specifically, we will partner with the LA
17 County Department of Public Health to:
18 1. Use road sensor data to analyze traffic patterns in Los Angeles County to understand
19 the impact of social distancing guidelines on population flow.
20 2. Develop a dynamic transmission network model of COVID-19 using results from Aim 1
21 and disease parameters from the medical literature to identify high priority districts for
22 testing.
23 3. Develop a location model to optimally place drive-through testing sites in these districts.
24 The proposed work will use methodology from infectious disease transmission models, traffic
25 data, and facility location models together in a novel way. Not only will we provide much needed
26 insight using empirical data into population flow dynamics in the context of social distancing
27 recommendations, we will shed light on infectious disease modeling more generally. By creating
28 a compartmental network model with realistic, time-varying travel patterns in a large
29 metropolitan area, the proposed work will further our understanding of the impacts of structural
30 modeling assumptions on disease prediction.
1项目概要
在没有疫苗或有效治疗的情况下,迫切需要进行广泛的
3 COVID-19检测以控制疾病传播。然而,完整的群体测试是
4.由于检测用品有限,需要训练有素的卫生工作人员,
5可以更好地用于照顾那些被证实感染的人。因此,
6.在高优先地区进行检测,这些地区的检测可能会发现阳性病例。识别感染者
随着测试变得更加广泛,7个人将提供以下方面的关键信息:
8总体疾病流行率,为今后的疾病控制工作提供信息。
9.我们可以通过综合和使用
10种交通模式,因为交通模式可以揭示可能的传播模式,
11洛杉矶县。我们建议使用USC存档数据管理系统
12(ADMS),它收集和综合交通数据,以创建一个流行病模型,
13最新的始发地-目的地交通信息。我们将使用该模型来识别26个
拉丁美洲和加勒比地区的14个卫生区面临不明病例的最高风险,并最佳地选择检测地点
15个在这些地区。这使得我们的建议纳入交通变化
16模式作为社会距离的建议演变。具体来说,我们将与洛杉矶合作,
17县卫生局:
18 1.使用道路传感器数据分析洛杉矶县的交通模式,
19.社会距离准则对人口流动的影响。
20 2.使用目标1的结果开发COVID-19的动态传播网络模型
21和医学文献中的疾病参数,以确定高优先地区,
22测试
233.开发一个位置模型,以便在这些地区最佳地放置免下车考试点。
24.拟议的工作将使用传染病传播模型、交通
25个数据和设施位置模型以一种新颖的方式结合在一起。我们不仅会提供急需的
第26章在社会距离的背景下利用经验数据对人口流动动态的洞察
27条建议,我们将更普遍地阐明传染病建模。通过创建
图28是一个具有现实的、随时间变化的旅行模式的分区网络模型,
29大都市圈,建议的工作将进一步了解结构性的影响,
疾病预测的30个建模假设。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sze-Chuan Suen其他文献
Sze-Chuan Suen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sze-Chuan Suen', 18)}}的其他基金
Using Road Traffic Data to Identify COVID-19 Priority Testing Locations in Southern California
使用道路交通数据确定南加州的 COVID-19 优先测试地点
- 批准号:
10472496 - 财政年份:2021
- 资助金额:
$ 14.37万 - 项目类别:
相似国自然基金
层出镰刀菌氮代谢调控因子AreA 介导伏马菌素 FB1 生物合成的作用机理
- 批准号:2021JJ40433
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
寄主诱导梢腐病菌AreA和CYP51基因沉默增强甘蔗抗病性机制解析
- 批准号:32001603
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
AREA国际经济模型的移植.改进和应用
- 批准号:18870435
- 批准年份:1988
- 资助金额:2.0 万元
- 项目类别:面上项目
相似海外基金
Spatial modelling of COVID-19 at the small area level using population movement data
使用人口流动数据在小区域层面对 COVID-19 进行空间建模
- 批准号:
559264-2021 - 财政年份:2022
- 资助金额:
$ 14.37万 - 项目类别:
Postgraduate Scholarships - Doctoral
Understanding the COVID-19 Journeys and Vaccine Experiences of Racialized and Immigrant Communities in the Greater Toronto Area
了解大多伦多地区种族化和移民社区的 COVID-19 旅程和疫苗体验
- 批准号:
459238 - 财政年份:2021
- 资助金额:
$ 14.37万 - 项目类别:
Operating Grants
SCC-CIVIC-PG Track B: A Visualization Tool and Assessment Framework for Civic Technology Use in the DMV Area: The Case of 311 Systems During the COVID-19 Outbreak
SCC-CIVIC-PG Track B:DMV 地区公民技术使用的可视化工具和评估框架:COVID-19 爆发期间 311 系统的案例
- 批准号:
2043900 - 财政年份:2021
- 资助金额:
$ 14.37万 - 项目类别:
Standard Grant
Comparative studies on labour issues on agriculture and rural area in post-COVID-19 era
后COVID-19时代农业农村劳动问题比较研究
- 批准号:
21H00634 - 财政年份:2021
- 资助金额:
$ 14.37万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Spatial modelling of COVID-19 at the small area level using population movement data
使用人口流动数据在小区域层面对 COVID-19 进行空间建模
- 批准号:
559264-2021 - 财政年份:2021
- 资助金额:
$ 14.37万 - 项目类别:
Postgraduate Scholarships - Doctoral
Covid-19 as amplifier of social inequality- SMall ARea Analyses with German neighborhood Data (SMARAGD)
Covid-19 是社会不平等的放大器 - 使用德国社区数据进行小面积分析 (SMARAGD)
- 批准号:
492351283 - 财政年份:2021
- 资助金额:
$ 14.37万 - 项目类别:
Research Grants
Mobilizing the Chinese Immigrant Community and Battling the Potential COVID-19 outbreak in the Greater Toronto Area: Gathering essential information, creating a mutual support quarantine network and assessing psychological impacts
动员华人移民社区,应对大多伦多地区潜在的 COVID-19 疫情:收集重要信息,建立互助隔离网络并评估心理影响
- 批准号:
422630 - 财政年份:2020
- 资助金额:
$ 14.37万 - 项目类别:
Operating Grants
Build and Broaden: The Long-Term Impact of COVID-19 in Hispanic Communities in the Tri-State Area
建设和扩大:COVID-19 对三州地区拉美裔社区的长期影响
- 批准号:
2038458 - 财政年份:2020
- 资助金额:
$ 14.37万 - 项目类别:
Standard Grant
RAPID: Impact of CoVID-19 Stay-at-Home Orders on urban stream quality in Denver Metro Area with application for future urban living scenarios
RAPID:CoVID-19 居家令对丹佛都会区城市流质量的影响及其在未来城市生活场景中的应用
- 批准号:
2031614 - 财政年份:2020
- 资助金额:
$ 14.37万 - 项目类别:
Standard Grant
COVID 19 Supplement - NIH TCF TASK AREA B-1
COVID 19 补充材料 - NIH TCF 任务领域 B-1
- 批准号:
10301515 - 财政年份:2020
- 资助金额:
$ 14.37万 - 项目类别:














{{item.name}}会员




