A muco-penetrating biomaterial-based subunit vaccine for programming protective immune responses to SARS-CoV-2

一种基于粘膜穿透生物材料的亚单位疫苗,用于编程针对 SARS-CoV-2 的保护性免疫反应

基本信息

  • 批准号:
    10195402
  • 负责人:
  • 金额:
    $ 20.47万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-01 至 2024-04-30
  • 项目状态:
    已结题

项目摘要

1. ABSTRACT/SUMMARY Given that the site of entry of SARS-CoV-2 is the respiratory mucosa, an effective vaccine for SARS-CoV-2 should initiate both humoral and respiratory mucosal immune responses. Although an intranasal subunit vaccine would be an ideal platform for SARS-CoV-2, transport across the nasal mucosa and a lack of safe and effective mucosal vaccine adjuvants thwart the development of a clinically-viable intranasal subunit vaccine. We propose to develop an intranasal vaccine composed of SARS-CoV-2 proteins conjugated to an immunostimulatory biomaterial that overcomes the transport barriers of the nasal mucosa and thus induces protective mucosal and systemic immunity. Our platform is composed of SARS-CoV-2 receptor-binding domain portion (RBD) conjugated to water-soluble polymers, termed MPGAP, that are synthesized from monomers that bind nasal mucus, disrupt endothelial thigh junctions, and target and activate antigen presenting cells (APCs). Thus, when administered intranasally, RBD- MPGAP conjugates should (1) adhere to nasal mucus, increasing residency time at the nasal epithelium, (2) dismantle tight junctions, maximizing paracellular transport to underlying APCs and nasal associated lymphoid tissue, (3) target conjugated RBD to and activate APCs, eliciting APC-derived signals that activate T and B cells. By overcoming the biological barriers of the nasal endothelium and targeting immunostimulatory factors to immune cells, RBD- MPGAP should induce protective mucosal and systemic immunity in the absence of off-target effects. RBD-MPGAP conjugates will be produced, characterized, and their ability to bind nasal mucus, enhance paracellular transport, and target and activate antigen presenting cells will be tested in mice. The neutralizing antibody titer of serum and respiratory fluids from RBD-MPGAP-immunized mice will be assessed via an in-vitro SARS-CoV-2 neutralization assay. Finally, the protective efficacy and durability of the mucosal and systemic immunity elicited by internasal RBD-MPGAP will be investigated in a SARS-CoV-2 mouse model. Completion of this project will validate the preclinical efficacy of an intranasal SARS-CoV-2 subunit vaccine and deliver a platform that could combat numerous other respiratory infections, from seasonal influenza to the next respiratory viral pandemic.
1.摘要/摘要 鉴于SARS-CoV-2的进入部位是呼吸道粘膜,有效的SARS-CoV-2疫苗应该是 启动体液和呼吸道粘膜免疫反应。尽管鼻腔亚单位疫苗将是一种 SARS-CoV-2的理想平台,跨鼻粘膜运输,缺乏安全有效的粘膜疫苗 佐剂阻碍了临床可行的鼻腔亚单位疫苗的开发。我们建议发展一种鼻腔内 由SARS-CoV-2蛋白与免疫刺激生物材料结合组成的疫苗 鼻黏膜的运输障碍,从而诱导保护性黏膜和系统免疫。我们的平台是 由SARS-CoV-2受体结合结构域部分(RBD)连接到水溶性聚合物组成,称为 MPGAP是由结合鼻粘液的单体合成的,它破坏了大腿内皮连接,并靶向和 激活抗原提呈细胞(APC)。因此,在鼻腔给药时,RBD-MPGAP结合物应该(1) 黏附鼻腔粘液,增加鼻腔上皮停留时间,(2)拆除紧密连接,最大限度地 (3)靶向结合RBD并激活 APC,激发APC衍生的信号,激活T细胞和B细胞。通过克服鼻腔的生物障碍 RBD-MPGAP对内皮细胞和免疫刺激因子靶向免疫细胞的保护作用 以及在没有脱靶效应的情况下的系统免疫力。RBD-MPGAP偶联物将被生产、表征和 它们结合鼻腔粘液、增强细胞旁运输以及靶向和激活抗原提呈细胞的能力将是 在老鼠身上进行了测试。RBD-MPGAP免疫小鼠血清和呼吸液中和抗体滴度 通过体外SARS-CoV-2中和试验进行评估。最后,防腐剂的保护效果和耐用性 将在SARS-CoV-2小鼠模型上研究RBD-MPGAP鼻腔注射诱导的黏膜和系统免疫。 该项目的完成将验证鼻腔注射SARS-CoV-2亚单位疫苗的临床前疗效,并提供 一个可以抗击从季节性流感到下一种呼吸道病毒等众多其他呼吸道感染的平台 大流行。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Scott Wilson其他文献

Virgil in the Renaissance
文艺复兴时期的维吉尔
  • DOI:
    10.1017/cbo9780511762581
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David Scott Wilson
  • 通讯作者:
    David Scott Wilson

David Scott Wilson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Scott Wilson', 18)}}的其他基金

The first polymeric opioid conjugate vaccine
第一种聚合阿片结合疫苗
  • 批准号:
    10441532
  • 财政年份:
    2021
  • 资助金额:
    $ 20.47万
  • 项目类别:
The first polymeric opioid conjugate vaccine
第一种聚合阿片结合疫苗
  • 批准号:
    10287132
  • 财政年份:
    2021
  • 资助金额:
    $ 20.47万
  • 项目类别:
Tolerance-programming biomaterial-based Intranasal ASIT for the treatment of autoimmunity
基于耐受编程生物材料的鼻内 ASIT 用于治疗自身免疫性疾病
  • 批准号:
    10688041
  • 财政年份:
    2021
  • 资助金额:
    $ 20.47万
  • 项目类别:
Tolerance-programming biomaterial-based Intranasal ASIT for the treatment of autoimmunity
基于耐受编程生物材料的鼻内 ASIT 用于治疗自身免疫性疾病
  • 批准号:
    10295511
  • 财政年份:
    2021
  • 资助金额:
    $ 20.47万
  • 项目类别:
A muco-penetrating biomaterial-based subunit vaccine for programming protective immune responses to SARS-CoV-2
一种基于粘膜穿透生物材料的亚单位疫苗,用于编程针对 SARS-CoV-2 的保护性免疫反应
  • 批准号:
    10402927
  • 财政年份:
    2021
  • 资助金额:
    $ 20.47万
  • 项目类别:
A muco-penetrating biomaterial-based subunit vaccine for programming protective immune responses to SARS-CoV-2
一种基于粘膜穿透生物材料的亚单位疫苗,用于编程针对 SARS-CoV-2 的保护性免疫反应
  • 批准号:
    10612436
  • 财政年份:
    2021
  • 资助金额:
    $ 20.47万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 20.47万
  • 项目类别:
    Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 20.47万
  • 项目类别:
    Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20.47万
  • 项目类别:
    Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20.47万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 20.47万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20.47万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 20.47万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 20.47万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 20.47万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20.47万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了