Identifying Person-Specific Drivers of Adolescent Depression via Idiographic Network Modeling of Active and Passive Smartphone Data
通过主动和被动智能手机数据的具体网络建模来识别青少年抑郁症的特定个人驱动因素
基本信息
- 批准号:10196290
- 负责人:
- 金额:$ 19.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-14 至 2023-03-31
- 项目状态:已结题
- 来源:
- 关键词:18 year oldAddressAdolescenceAdolescentAdultAffectAlgorithmsAnhedoniaBehaviorBenchmarkingCaregiversCellular PhoneCharacteristicsClinicalClinical ResearchCognitiveCognitive TherapyDataData CollectionDepressed moodDevelopmentDiagnosticDiseaseEcological momentary assessmentExhibitsFeedbackFrequenciesFutureHeterogeneityIndividualIndividual DifferencesInfluentialsInterventionInterviewIrritable MoodLeadMachine LearningMaintenanceMajor Depressive DisorderMeasurementMeasuresMental DepressionMethodsModelingMonitorMoodsMorbidity - disease rateOutcomeOwnershipParentsParticipantPatient Self-ReportPersonal CommunicationPersonsPhysical activityPhysiologyProcessPsychopathologyPsychotherapyPublic HealthPublishingResearchResearch Domain CriteriaResearch PersonnelRiskSignal TransductionSleepSubgroupSurveysSymptomsTeenagersTestingTherapeuticTimeValidationWorkWristYouthactigraphyanxiousbasechild depressiondepressive symptomsdiariesexperiencefollow up assessmentfollow-upimprovedinsightmortalitynatural languagenetwork modelsnovelpersonalized decisionpersonalized interventionpersonalized medicineprospectivepsychologicracial and ethnicrelating to nervous systemresponsesensorsocialsocioeconomicstooltreatment effect
项目摘要
PROJECT SUMMARY/ABSTRACT
Adolescents experience escalating risk for developing clinical depression, which can lead to lifelong morbidity
and mortality. The neural, physical, cognitive, and socioemotional changes that may contribute to this risk also
signal an opportunity for high impact intervention. Unfortunately, psychotherapy trials demonstrate modest
effects on youth depression. To improve long-term outcomes for adolescents, this study will identify person-
specific drivers of adolescent depression that can guide treatment personalization. Prior research with
depressed or anxious adults demonstrates the existence of such drivers—symptoms and related processes
that are influential (i.e., predict change in other symptoms), modifiable, and exhibit individual differences.
Personalized selection and sequencing of cognitive behavioral therapy (CBT) modules to target these drivers
early in adults have produced larger treatment effects compared to a historical benchmark. Identifying person-
specific drivers during adolescence could inform treatments that account for both developmental and individual
differences to shift the trajectory of depression onset and maintenance. Investigating person-specific drivers
usually involves intensive surveying of self-reported experience via smartphone-based ecological momentary
assessment (EMA). Emerging evidence suggests that smartphones can also monitor mood through passive
sensing of depression-related behaviors with minimal response burden. However, nearly all such studies have
been conducted with adults, despite near universal smartphone ownership among adolescents in the US.
Thus, this study will leverage depressed adolescents' everyday smartphone use to assess the validity of
mobile sensing against established ambulatory methods (i.e., EMA and actigraphy) to identify person-specific
drivers of adolescent depression. Fifty adolescents (12–18 years old) with elevated depressive symptoms will
participate in 30 days of: a) smartphone-based EMA of depressive symptoms, processes, and affect (4x/day),
sleep diary (1x/day); (b) mobile sensing of mobility, physical activity, sleep, natural language use in typed
interpersonal communication, screen-on time and call frequency/duration; and (c) wrist actigraphy of physical
activity and sleep. Adolescents and caregivers will complete diagnostic interviews and other measures (e.g.,
developmental, clinical, Research Domain Criteria) at baseline, as well as user feedback interviews at follow-
up. To address study aims: 1) idiographic, within-subject networks of EMA symptoms will be modeled to
identify each adolescent's drivers; 2) correlations among EMA, mobile sensor, and actigraph measures of
sleep, physical, and social activity; and machine learning prediction of core depressive symptoms (self-
reported mood and anhedonia) will be used to assess the validity of mobile sensing for identifying person-
specific drivers; 3) between-subject baseline characteristics will be explored as predictors of person-specific
drivers. These results will inform future development of a scalable, low-burden smartphone-based tool that can
guide personalized treatment decisions for depressed adolescents, with potential public health impact.
项目总结/摘要
青少年患临床抑郁症的风险不断上升,这可能导致终身患病
and mortality.可能导致这种风险的神经、身体、认知和社会情绪变化也
这是一个进行高影响力干预机会。不幸的是,心理治疗试验显示,
对青年抑郁症的影响为了改善青少年的长期结果,这项研究将确定个人-
青少年抑郁症的特定驱动因素,可以指导治疗个性化。先前的研究与
抑郁或焦虑的成年人证明了这种驱动症状和相关过程的存在
有影响力的(即,预测其他症状的变化),可修改,并表现出个体差异。
针对这些驱动因素的认知行为治疗(CBT)模块的个性化选择和排序
与历史基准相比,早期成人产生了更大的治疗效果。识别人-
青春期的特定驱动因素可以为治疗提供信息,
差异改变抑郁症发作和维持的轨迹。调查特定人员的驱动因素
通常涉及通过基于智能手机的生态瞬间对自我报告的体验进行深入调查
评估(EMA)。新出现的证据表明,智能手机也可以通过被动监测情绪,
以最小的反应负担感知抑郁相关行为。然而,几乎所有这些研究都
尽管美国青少年几乎普遍拥有智能手机,但这项研究是在成年人中进行的。
因此,这项研究将利用抑郁青少年的日常智能手机使用来评估
移动的感测相对于已建立的流动方法(即,EMA和腕动记录仪),以识别个人特异性
青少年抑郁症的驱动因素50名抑郁症状加重的青少年(12-18岁)将
参加30天的:a)基于智能手机的抑郁症状,过程和影响的EMA(4x/天),
睡眠日记(1x/天);(B)在打字中移动性、身体活动、睡眠、自然语言使用的移动的感测
人际沟通,屏幕上的时间和呼叫频率/持续时间;以及(c)手腕活动记录物理
活动和睡眠。青少年和照顾者将完成诊断访谈和其他措施(例如,
开发、临床、研究领域标准),以及随访时的用户反馈访谈-
起来为了解决研究目的:1)将对EMA症状的具体受试者内网络进行建模,
识别每个青少年的驱动因素; 2)EMA、移动的传感器和活动记录仪测量之间的相关性,
睡眠,身体和社会活动;以及核心抑郁症状的机器学习预测(自我
报告的情绪和快感缺失)将被用于评估移动的感测用于识别人的有效性-
特定驱动因素; 3)将探索受试者间基线特征作为个体特异性
司机这些结果将为未来开发一种可扩展的、低负担的基于智能手机的工具提供信息,
指导抑郁青少年的个性化治疗决策,具有潜在的公共卫生影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mei Yi Ng其他文献
Mei Yi Ng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mei Yi Ng', 18)}}的其他基金
Identifying Person-Specific Drivers of Adolescent Depression via Idiographic Network Modeling of Active and Passive Smartphone Data
通过主动和被动智能手机数据的具体网络建模来识别青少年抑郁症的特定个人驱动因素
- 批准号:
10393050 - 财政年份:2021
- 资助金额:
$ 19.83万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 19.83万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 19.83万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 19.83万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 19.83万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 19.83万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 19.83万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 19.83万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 19.83万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 19.83万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 19.83万 - 项目类别:
Research Grant