Identifying existing, FDA-approved drugs with clinically protective effects against coronavirus disease 2019 using a big data approach
使用大数据方法识别 FDA 批准的现有药物,对 2019 年冠状病毒病具有临床保护作用
基本信息
- 批准号:10195454
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2021-04-02
- 项目状态:已结题
- 来源:
- 关键词:2019-nCoVAddressAffectAgeAlgorithmic AnalysisAlgorithmsAmericanAngiotensin-Converting Enzyme InhibitorsAnticoagulantsAntiplatelet DrugsAntiviral AgentsBig DataBiometryBlood Coagulation DisordersCOVID-19COVID-19 diagnosisCOVID-19 patientCOVID-19 treatmentCessation of lifeChronicClinicalClinical DataClinical ResearchClinical TrialsCommunicable DiseasesComplicationDataData SetDatabasesDevelopmentDiseaseDrug CombinationsGoalsHealthHealth InsuranceHealthcareHospitalizationImmune responseIn VitroInpatientsInsurance CarriersJudgmentLogistic RegressionsMechanical ventilationMedicalMedicareMethodsMineralocorticoid ReceptorModelingOutcomeOutpatientsPatientsPharmaceutical PreparationsPharmacoepidemiologyProcessProspective StudiesProtective AgentsRaceResearchResearch PersonnelResourcesRiskRisk FactorsSARS-CoV-2 positiveShockStatistical AlgorithmSubgroupTestingTherapeuticTherapeutic EffectTimeUnited States Food and Drug AdministrationVaccinesVirusVisionVulnerable PopulationsWorkclinically significantcomorbiditycoronavirus diseasecyclooxygenase 1cytokine release syndromedemographicsdrug candidatedrug developmentdrug repurposingglobal health emergencyhigh riskhuman dataimmunomodulatory therapiesimprovedin silicoin vivoinhibitor/antagonistinsurance claimsinterestmachine learning algorithmmachine learning methodmortalitymultidisciplinarynovelnovel therapeuticsoff-label usepandemic diseasepatient subsetspreclinical studyprophylacticprospectiveprotective effectpublic health emergencysex
项目摘要
Project Summary/Abstract
Coronavirus Disease 2019 (COVID-19) is a national and global public health emergency. Because the
causative virus is novel, the present options for treatment are extremely limited, and an effective vaccine
could be 1-2 years away. Thus, there is an urgent need for efficacious therapeutics against the disease.
While development of new drugs is under way, that process is slow and resource-intensive. In the short-
to-medium term, a superior strategy is to repurpose already existing drugs to treat the disease. Over
100 drugs already approved by the Food and Drug Administration (FDA) have shown in vitro, in silico,
or theoretical effect against SARS-CoV-2, the virus that causes COVID-19, or the hyperinflammatory
immune response it provokes. What is unclear is how many of these have a significant, protective effect
on actual patients, as only a tiny fraction of these drugs is in clinical trials. Most of these agents are
chronic medications, and thus there are millions of Americans who are already using them. The first aim
of this study is to assess the degree of protection any of these drugs confers against the serious
complications of COVID-19 while adjusting for known risk factors and confounders. The second aim is
to search for additional interactions between drugs or combinations of drugs and specific demographic
and/or clinical subgroups that could be protective or harmful. The Change Healthcare Database, a part
of the COVID-19 Research Database, contains up-to-date health insurance claims data for about one-
third of all Americans. Using this database, this study will evaluate the impact of these drugs on the risk
of four important outcomes in patients who are COVID-19-positive: need for hospitalization, use of
mechanical ventilation, shock, and death. Results will be risk-adjusted for the risk factors already well
established to predict poor outcomes in COVID-19. This study will further mine the data for second- and
third-order interactions between drugs or combinations of drugs and different subpopulations of patients
using a novel machine learning method called the Feasible Solution Algorithm (FSA). The FSA enables
the researcher to uncover higher-order statistical interactions in regression models, which leads to the
identification of subgroups and complexities that are not always apparent with traditional regression
models. If the results show candidate drugs with highly protective effects, these can be prioritized for
prospective clinical studies. Drugs that show harmful effects can be considered for discontinuation in
infected or high-risk patients.
项目摘要/摘要
冠状病毒病2019(新冠肺炎)是全国性和全球性的突发公共卫生事件。因为
致病病毒是一种新的病毒,目前的治疗选择极其有限,而有效的疫苗
可能是1-2年后。因此,迫切需要有效的治疗方法来对抗这种疾病。
虽然新药的开发正在进行中,但这一过程缓慢且资源密集型。简而言之-
从中期来看,一个更好的策略是重新调整现有药物的用途来治疗这种疾病。完毕
美国食品和药物管理局(FDA)已经批准的100种药物已经在体外、硅胶中显示,
或者理论上对导致新冠肺炎的SARS-CoV-2病毒或高炎性疾病的效果
它会引起免疫反应。目前尚不清楚其中有多少具有显著的保护作用。
在实际患者身上,因为这些药物中只有一小部分处于临床试验中。这些特工中的大多数是
慢性药物,因此有数百万美国人已经在使用它们。第一个目标
这项研究的目的是评估这些药物对严重的
在调整已知的危险因素和混杂因素的同时,新冠肺炎的并发症也有所增加。第二个目标是
搜索药物或药物组合与特定人口之间的其他相互作用
和/或可能具有保护性或危害性的临床亚群。改变医疗保健数据库的一部分
的最新健康保险索赔数据,包含约1-
所有美国人中的第三位。使用这个数据库,这项研究将评估这些药物对风险的影响
新冠肺炎阳性患者的四项重要结果:需要住院、使用
机械通风、休克和死亡。结果将根据已经很好的风险因素进行风险调整
成立的目的是预测新冠肺炎的糟糕结果。这项研究将进一步挖掘数据,为第二和
药物或药物组合与不同患者亚群之间的三级相互作用
使用一种名为可行解算法(FSA)的新型机器学习方法。FSA支持
研究人员发现回归模型中的高阶统计相互作用,这导致了
识别传统回归中并不总是明显的子组和复杂性
模特们。如果结果显示候选药物具有高度保护作用,这些药物可以优先用于
前瞻性临床研究。显示有害影响的药物可考虑在以下时间停止使用
感染或高危患者。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Josh Lambert其他文献
Josh Lambert的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Josh Lambert', 18)}}的其他基金
Identifying existing, FDA-approved drugs with clinically protective effects against coronavirus disease 2019 using a big data approach
使用大数据方法识别 FDA 批准的现有药物,对 2019 年冠状病毒病具有临床保护作用
- 批准号:
10395043 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Identifying existing, FDA-approved drugs with clinically protective effects against coronavirus disease 2019 using a big data approach
使用大数据方法识别 FDA 批准的现有药物,对 2019 年冠状病毒病具有临床保护作用
- 批准号:
10380869 - 财政年份:2021
- 资助金额:
-- - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
-- - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
-- - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant














{{item.name}}会员




