Medicare and Beneficiaries with Dementia
医疗保险和痴呆症受益人
基本信息
- 批准号:10196906
- 负责人:
- 金额:$ 29.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-04-15 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:AccountingAddressAgingAmericanAreaCaringCase MixesChronic CareChronic Obstructive Airway DiseaseClinicalCodeCognitionCognitiveCognitive deficitsComplexDataData SetData SourcesDementiaDiabetes MellitusDiagnosisDiffusionDiseaseEnrollmentEpidemiologistEventFamilyFee-for-Service PlansFee-for-Service ReimbursementsGeriatric PsychiatryHealthHealth and Retirement StudyHeart failureHomeImpaired cognitionIncentivesIndividualInternal MedicineInvestigationLinkMedicaidMedicalMedicareMedicare claimMethodsModelingMorbidity - disease rateNeurologyOutcomePatientsPenetrationPharmaceutical PreparationsPhysiciansPoliciesPopulationPredispositionProbabilityPsychosesReference StandardsResearchResearch PersonnelRiskRisk AdjustmentRoleSamplingServicesSeveritiesSeverity of illnessSkilled Nursing FacilitiesSorting - Cell MovementStandardizationSupportive careSurveysSystemVariantWeightWorkbasebeneficiarycare outcomescognitive abilitycognitive functioncomorbiditydementia caredesigndual eligibleefficacious treatmentflexibilityfrailtyhealth dataimprovedincentive programmedical specialtiespaymentpredictive modelingprogramsprovider networksresearch studytrend
项目摘要
ABSTRACT
Millions of Americans have or will develop dementia, which has potentially dire implications for them, their
families, and the Medicare program. Beneficiaries with dementia already account for an estimated one in five
dollars of Medicare spending, yet the Medicare program has struggled to meet their complex medical and
supportive needs. Researchers' efforts to describe and improve the care Medicare beneficiaries with dementia
receive have been hampered by the difficulty of identifying those with dementia or cognitive impairments in
claims data, yet such data are currently the only data on Medicare beneficiaries that are available on a large
scale. Prior studies suggest that many beneficiaries have undetected or undiagnosed disease, while others
with intact cognition carry a false claims-based diagnosis. Accordingly, our first aim is to leverage linked survey
and claims data to predict the probability of dementia and its severity, according to a validated, survey-based
reference standard. Better identification of those with dementia is a prerequisite to obtain a more accurate
national picture of the care for this important population. The two data sources are also complementary; survey
data help assess under-diagnosis and the probability that a claim-based diagnosis truly represents dementia,
and claims data supports the examination of Medicare programs at scale. We will then describe the sorting of
Medicare beneficiaries across available plan options: Traditional Medicare (TM), Medicare Advantage (MA),
and within MA, Special Needs Plans (SNPs). This work builds on our existing P01 research on choice, which
demonstrated that beneficiaries with less cognitive ability were more likely to choose a dominated plan. In this
project, we will examine sorting with respect to options potentially advantageous for those with dementia, e.g.,
SNPs. Finally, we will examine dementia care and outcomes in the changing Medicare program as both
payments for dementia beneficiaries and benefit flexibility increase. For example, MA plans will receive
substantially larger payments for enrolled beneficiaries with dementia starting in 2020 through risk adjustment
formula changes, which coincides with new flexibility in offering LTSS because of the CHRONIC Care Act.
Additionally, reimbursement of skilled nursing facilities will change in late 2019 to weigh cognitive deficits more
and therapy minutes less. Our study will provide critically needed evidence about the role of incentives and
program flexibility for beneficiaries with dementia receiving care within Medicare in an era of change.
抽象的
数以百万计
家庭和医疗保险计划。患有痴呆症的受益人已经说明了大约五分之一
美元的医疗保险支出,但是Medicare计划一直在努力满足其复杂的医疗和
支持需求。研究人员为描述和改善痴呆症的医疗保险受益人的努力
受到识别痴呆症或认知障碍的人的困难,受到了阻碍
索赔数据,但是这些数据目前是医疗保险受益人的唯一数据
规模。先前的研究表明,许多受益人没有发现或未诊断出疾病,而其他受益人则
完整的认知带有基于索赔的诊断。因此,我们的第一个目的是利用链接的调查
并声称数据以预测痴呆症的可能性及其严重性,根据经过验证的,基于调查的概率
参考标准。更好地识别痴呆症患者是获得更准确的先决条件
国家照顾这个重要人群的国家图片。这两个数据源也是互补的。民意调查
数据帮助评估诊断不足以及基于索赔的诊断真正代表痴呆的可能性,
并索赔数据支持大规模检查Medicare计划。然后,我们将描述分类
可用计划选项的Medicare受益人:传统医疗保险(TM),Medicare Advantage(MA),
在MA中,特殊需求计划(SNP)。这项工作建立在我们现有的P01选择研究的基础上,
证明认知能力较低的受益人更有可能选择一个主导的计划。在这个
项目,我们将研究有关痴呆症患者可能有利的选择的分类,例如
SNP。最后,我们将研究不断变化的Medicare计划中的痴呆症护理和结果
痴呆受益人的付款和利益灵活性提高。例如,MA计划将收到
从2020年开始,通过风险调整开始,痴呆症的入学受益人的付款要大得多
公式变化,这与新的灵活性相吻合,在提供LTSS的新灵活性中,由于《慢性护理法》。
此外,熟练护理设施的报销将在2019年末变化,以权衡认知缺陷
和治疗分钟少。我们的研究将提供有关激励措施和
在变革时代,在医疗保险中接受痴呆症的受益人的计划灵活性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DAVID C GRABOWSKI其他文献
DAVID C GRABOWSKI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DAVID C GRABOWSKI', 18)}}的其他基金
Labor Market Conditions and the Quality of Long-Term Care Provided to Older Adults
劳动力市场状况和为老年人提供的长期护理的质量
- 批准号:
10097276 - 财政年份:2021
- 资助金额:
$ 29.6万 - 项目类别:
Labor Market Conditions and the Quality of Long-Term Care Provided to Older Adults
劳动力市场状况和为老年人提供的长期护理的质量
- 批准号:
10552064 - 财政年份:2021
- 资助金额:
$ 29.6万 - 项目类别:
Labor Market Conditions and the Quality of Long-Term Care Provided to Older Adults
劳动力市场状况和为老年人提供的长期护理的质量
- 批准号:
10328539 - 财政年份:2021
- 资助金额:
$ 29.6万 - 项目类别:
Public Policy and the Demand for Long-Term Care Insurance
公共政策和长期护理保险的需求
- 批准号:
8332862 - 财政年份:2011
- 资助金额:
$ 29.6万 - 项目类别:
Public Policy and the Demand for Long-Term Care Insurance
公共政策和长期护理保险的需求
- 批准号:
8212656 - 财政年份:2011
- 资助金额:
$ 29.6万 - 项目类别:
Health Care Expenditures for Nursing Home Residents with Advanced Dementia
患有晚期痴呆症的疗养院居民的医疗保健支出
- 批准号:
8098379 - 财政年份:2011
- 资助金额:
$ 29.6万 - 项目类别:
Selection and the Quality Impact of Nursing Home Ownership
疗养院所有权的选择和质量影响
- 批准号:
7697047 - 财政年份:2009
- 资助金额:
$ 29.6万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
The role of osteoblast progenitors in response to bone anabolic agents
成骨细胞祖细胞对骨合成代谢剂的反应的作用
- 批准号:
10404415 - 财政年份:2023
- 资助金额:
$ 29.6万 - 项目类别:
Ultra-precision clinical imaging and detection of Alzheimers Disease using deep learning
使用深度学习进行超精密临床成像和阿尔茨海默病检测
- 批准号:
10643456 - 财政年份:2023
- 资助金额:
$ 29.6万 - 项目类别:
Cafe Move: A Novel Program for Prevention of Age-Related Physical Frailty
Cafe Move:预防与年龄相关的身体虚弱的新计划
- 批准号:
10861960 - 财政年份:2023
- 资助金额:
$ 29.6万 - 项目类别:
Mapping the Neurobiological Risks and Consequences of Alcohol Use in Adolescence and Across the Lifespan
绘制青春期和整个生命周期饮酒的神经生物学风险和后果
- 批准号:
10733406 - 财政年份:2023
- 资助金额:
$ 29.6万 - 项目类别:
Bayesian Statistical Learning for Robust and Generalizable Causal Inferences in Alzheimer Disease and Related Disorders Research
贝叶斯统计学习在阿尔茨海默病和相关疾病研究中进行稳健且可推广的因果推论
- 批准号:
10590913 - 财政年份:2023
- 资助金额:
$ 29.6万 - 项目类别: