Methods Core
方法核心
基本信息
- 批准号:10197804
- 负责人:
- 金额:$ 19.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-23 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAdverse effectsAntipsychotic AgentsAreaChronicClinicalClinical ResearchCodeConsultationsDataDevelopmentDiagnosisEvaluationFundingGoalsGrantHealth Services ResearchHealth systemIndividualInformaticsIntegrated Health Care SystemsInterest GroupLaboratoriesLearningMachine LearningMental DepressionMental HealthMethodsNational Institute of Mental HealthNetwork InfrastructureNetwork-basedObservational epidemiologyOutcome AssessmentPatient Outcomes AssessmentsPatientsPatternPerinatal ExposurePopulationPractice based researchPredictive AnalyticsPrimary Health CarePrivacyQualitative ResearchRequest for ApplicationsResearchResearch DesignResearch InfrastructureResearch MethodologyResearch PersonnelResearch Project GrantsResourcesRiskSpeedStudy modelsSuicide preventionTreatment FailureTrustWorkYouthanalytical methodanalytical tooldata infrastructuredata qualitydata resourcedesignfirst episode psychosishealth care deliveryhealth dataimplementation scienceimprovedindividualized medicinelarge scale datalearning communitymembermethod developmentnext generationpatient populationperinatal mental healthpractice-based research networkpragmatic trialprenatal exposureprogramspublic repositoryresearch and developmentrisk prediction modelsocial health determinantssuicidal risktool developmenttreatment effecttreatment strategy
项目摘要
We propose to expand the existing Mental Health Research Network (MHRN) to include 14 research centers
embedded in large health systems serving a combined population of over 25 million patients in 16 states.
MHRN infrastructure will be enhanced to support a next-generation research network, including:
• Expansion of data resources regarding patient-reported outcomes from real-world practice
• Development of new data resources in high-priority areas (e.g. perinatal exposures)
• A Scientific Analysis interest group to increase the rigor of analytic methods across MHRN projects
• Methods development focused on evaluation of adaptive treatment strategies for people with more severe
mental health conditions and on predictive analytic tools designed to address stakeholder priorities
This overall application requests support for an Administrative Core, a Methods core, two Signature research
projects and two Pilot research projects. The Methods Core will include an Informatics Unit, led by Drs.
Gregory Simon and Christine Stewart, and a Scientific Analysis Unit, led by Drs. Susan Shortreed and Patrick
Heagerty. The Informatics Unit will continue highly successful work over the past 8 years, supporting routine
data quality assessment and descriptive analyses of diagnosis and treatment patterns across all participating
health systems. New work will include development of tools and resources to assess and minimize privacy
risks when sharing sensitive health data for research and development of specific new data areas (perinatal
mental health and prenatal exposures, expanded list of patient-reported outcomes, and assessments of social
determinants of health). The Informatics Unit will provide consultation to all MHRN core and affiliated projects
and share all resources with other researchers and health systems via MHRN's public repository of
specifications, code lists, and analytic code. The Scientific Analysis Unit will support to all MHRN core and
affiliated projects via project-specific consultation and development of a learning community of analysts and
biostatisticians across MHRN research centers. This Unit will also focus on development and dissemination of
analytic methods in two areas directly relevant to MHRN research. Work on evaluating adaptive treatment
strategies will build on Dr. Shortreed's recently funded methods grant to evaluate and disseminate methods for
using health system data to tailor treatments for individuals with more chronic or severe mental health
conditions, focusing on assessing treatment effects when treatments are adjusted or switched according to
previous treatment failures or adverse effects. Work on stakeholder-driven predictive analytics will build on
MHRN's development of accurate suicide risk prediction models, focusing on matching specific study designs
and model development methods with stakeholder priorities and implementation constraints.
我们建议扩大现有的心理健康研究网络(MHRN),以包括14个研究中心
嵌入大型卫生系统,为16个州的2500多万患者提供服务。
MHRN基础设施将得到加强,以支持下一代研究网络,包括:
·扩大关于患者报告的真实世界实践结果的数据资源
·在高度优先领域开发新的数据资源(例如围产期照射)
·科学分析兴趣小组,以提高MHRN项目分析方法的严谨性
·方法开发侧重于评估更严重的人的适应性治疗策略
心理健康状况和旨在解决利益相关者优先事项的预测分析工具
这个整体应用程序要求支持一个管理核心,一个方法核心,两个签名研究
项目和两个试点研究项目。方法核心将包括一个信息学单位,由博士领导。
格雷戈里·西蒙和克莉丝汀·斯图尔特,以及由苏珊·肖特里德和帕特里克博士领导的科学分析小组
希格斯信息股将继续开展过去8年来非常成功的工作,
所有参与者的诊断和治疗模式的数据质量评估和描述性分析
卫生系统。新的工作将包括开发工具和资源,以评估和尽量减少隐私
为研究和开发特定的新数据领域(围产期)而共享敏感的健康数据时的风险
精神健康和产前暴露,患者报告结果的扩展列表,以及社会风险评估
健康的决定因素)。信息部门将为人力资源网络的所有核心和附属项目提供咨询
并通过MHRN的公共资源库与其他研究人员和卫生系统共享所有资源,
规范、代码列表和分析代码。科学分析股将支持MHRN的所有核心和
通过具体项目咨询和发展分析师学习社区,
MHRN研究中心的生物统计学家。该股还将侧重于编制和传播
分析方法在两个领域直接相关的MHRN研究。评估适应性治疗的工作
战略将建立在博士Shorttreed最近资助的方法赠款,以评估和传播的方法,
使用卫生系统数据为患有慢性或严重心理健康的个人定制治疗方法
条件,重点是评估治疗效果时,调整或转换治疗,根据
既往治疗失败或不良反应。企业主驱动的预测分析工作将建立在
MHRN开发准确的自杀风险预测模型,重点是匹配特定的研究设计
和模型开发方法与利益相关者的优先事项和实施的限制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GREGORY E. SIMON其他文献
GREGORY E. SIMON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('GREGORY E. SIMON', 18)}}的其他基金
Real-Time Evaluation of Emerging Treatments for Suicide Risk
自杀风险新兴治疗方法的实时评估
- 批准号:
10197806 - 财政年份:2019
- 资助金额:
$ 19.29万 - 项目类别:
Whose Depression Are We Measuring?: Considering the role of place on Black women’s depression outcomes
我们在测量谁的抑郁症?:考虑地点对黑人女性抑郁症结果的作用
- 批准号:
10818149 - 财政年份:2019
- 资助金额:
$ 19.29万 - 项目类别:
Real-Time Evaluation of Emerging Treatments for Suicide Risk
自杀风险新兴治疗方法的实时评估
- 批准号:
10663086 - 财政年份:2019
- 资助金额:
$ 19.29万 - 项目类别:
Real-Time Evaluation of Emerging Treatments for Suicide Risk
自杀风险新兴治疗方法的实时评估
- 批准号:
10021735 - 财政年份:2019
- 资助金额:
$ 19.29万 - 项目类别:
相似海外基金
Unraveling Adverse Effects of Checkpoint Inhibitors Using iPSC-derived Cardiac Organoids
使用 iPSC 衍生的心脏类器官揭示检查点抑制剂的副作用
- 批准号:
10591918 - 财政年份:2023
- 资助金额:
$ 19.29万 - 项目类别:
Optimization of mRNA-LNP vaccine for attenuating adverse effects and analysis of mechanism behind adverse effects
mRNA-LNP疫苗减轻不良反应的优化及不良反应机制分析
- 批准号:
23K15383 - 财政年份:2023
- 资助金额:
$ 19.29万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Elucidation of adverse effects of combined exposure to low-dose chemicals in the living environment on allergic diseases and attempts to reduce allergy
阐明生活环境中低剂量化学品联合暴露对过敏性疾病的不良影响并尝试减少过敏
- 批准号:
23H03556 - 财政年份:2023
- 资助金额:
$ 19.29万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Green tea-based nano-enhancer as an adjuvant for amplified efficacy and reduced adverse effects in anti-angiogenic drug treatments
基于绿茶的纳米增强剂作为抗血管生成药物治疗中增强疗效并减少不良反应的佐剂
- 批准号:
23K17212 - 财政年份:2023
- 资助金额:
$ 19.29万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Effects of Tobacco Heating System on the male reproductive function and towards to the reduce of the adverse effects.
烟草加热系统对男性生殖功能的影响以及减少不利影响。
- 批准号:
22H03519 - 财政年份:2022
- 资助金额:
$ 19.29万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Mitigating the Adverse Effects of Ultrafines in Pressure Filtration of Oil Sands Tailings
减轻油砂尾矿压力过滤中超细粉的不利影响
- 批准号:
563657-2021 - 财政年份:2022
- 资助金额:
$ 19.29万 - 项目类别:
Alliance Grants
1/4-Deciphering Mechanisms of ECT Outcomes and Adverse Effects (DECODE)
1/4-破译ECT结果和不良反应的机制(DECODE)
- 批准号:
10521849 - 财政年份:2022
- 资助金额:
$ 19.29万 - 项目类别:
4/4-Deciphering Mechanisms of ECT Outcomes and Adverse Effects (DECODE)
4/4-破译ECT结果和不良反应的机制(DECODE)
- 批准号:
10671022 - 财政年份:2022
- 资助金额:
$ 19.29万 - 项目类别:
2/4 Deciphering Mechanisms of ECT Outcomes and Adverse Effects (DECODE)
2/4 ECT 结果和不良反应的破译机制(DECODE)
- 批准号:
10670918 - 财政年份:2022
- 资助金额:
$ 19.29万 - 项目类别:
Downsides of downhill: The adverse effects of head vibration associated with downhill mountain biking on visuomotor and cognitive function
速降的缺点:与速降山地自行车相关的头部振动对视觉运动和认知功能的不利影响
- 批准号:
2706416 - 财政年份:2022
- 资助金额:
$ 19.29万 - 项目类别:
Studentship