Mechanism of cdk4 diabetes rescue in IRS2 knockout mice
IRS2敲除小鼠cdk4糖尿病拯救机制
基本信息
- 批准号:10197110
- 负责人:
- 金额:$ 3.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:AdipocytesAllelesBeta CellCCND2 geneCell CycleCell Cycle ProgressionCell Cycle RegulationCell Differentiation processCell ProliferationCell physiologyCellsCellular biologyClosure by clampConsensusCyclin-Dependent KinasesCyclinsDataDefectDevelopmentDiabetes MellitusDiabetic mouseDifferentiation AntigensDiseaseE2F transcription factorsEpidemicFOXO1A geneFRAP1 geneFailureFinancial compensationG1/S TransitionGoalsHealthcareHyperglycemiaIRS2 geneImpairmentIn VitroInsulinInsulin ResistanceInvestigationIslets of LangerhansKnock-outKnockout MiceLeadLightLinkLiteratureMaintenanceMediatingMessenger RNAMetabolismMolecularMusNon-Insulin-Dependent Diabetes MellitusNuclearPPAR gammaPancreasPathway interactionsPeripheralPhasePhenotypePhosphorylation SitePhosphotransferasesPlayPopulationPrediabetes syndromeProcessProliferatingProteinsPublic HealthReadingRegulationReportingResearchRetinoblastomaRetinoblastoma ProteinRodentRodent ModelRoleS PhaseSiteStructure of beta Cell of isletSumTestingTherapeuticUnited StatesWorkcell dedifferentiationdiabeticeconomic impactimprovedin silicoin vivoinsulin secretioninsulin signalingisletknock-downlipid biosynthesisnoveloverexpressionpreservationresponsetranscription factortransdifferentiation
项目摘要
PROJECT SUMMARY
Type 2 Diabetes (T2D) is a major public health issue in the United States with approximately 9.3% of the
population suffering from the disease. Additionally, 86 million people have prediabetes and the economic
impact is staggering, with 1 in 10 health care dollars being spent on T2D and its complications. T2D results
from insulin resistance and reduced beta cell mass; thus, strategies to increase functional beta cell mass are
critical goals for diabetes research. Although it is well established (from rodent models) that increased beta
cell mass results from enhanced beta cell proliferation, new research suggests that beta cell dedifferentiation
also contributes to reduced beta cell function. Some proteins involved in the G1/S transition of the cell cycle,
especially Cdk4, are critical for the maintenance of beta cell proliferation and mass. Insulin receptor substrate 2
knockout (Irs2 KO) mice develop diabetes due to peripheral insulin resistance and reduced beta cell mass, and
we previously found that in vitro re-expression of cyclin D2, which activates Cdk4, rescues the loss of
proliferation in beta cells lacking Irs2. Therefore, we hypothesized that expression of a constitutively active
form of Cdk4 (Cdk4 R24C) might be able to rescue the diabetic phenotype of Irs2 KO mice. Intriguingly,
preliminary results suggest that Cdk4 R24C is able to completely rescue not only beta cell mass, but also
insulin secretion and beta cell differentiation. Interestingly, recent studies show that the Cdk4 kinase plays
many roles independently of its known activity in the cell cycle. Therefore, the goal of this proposal is to
determine the mechanisms behind this rescue and determine what atypical roles cdk4 plays in the beta cell. In
Aim 1, we will determine how Cdk4 rescues beta cell proliferation, focusing on both the canonical Cdk4-Rb-
E2F pathway, and will also identify novel Cdk4 interactors in the beta cell using BioID. In Aim 2, we will
determine if Cdk4 R24C rescues 1st or 2nd phase insulin secretion in Irs2 KO islets using both islet perifusion
and hyperglycemic clamps studies. We will also perform molecular studies to determine whether the KATPase
Kir6.2, which was previously reported to be a target of the Cdk4-Rb-E2F1 pathway, is increased and is
sufficient to rescue insulin secretion in Irs2 KO islets. Finally, in Aim 3 we will explore how Cdk4 R24C is able
to restore beta cell differentiation markers. This is surprising and interesting, since it goes against the data
showing that when beta cells proliferate they lose differentiation markers, and I think the most likely
explanation is that Cdk4 is having effects unrelated to its cell cycle actions. I will investigate how Cdk4 rescues
Pdx1 expression, with a focus on FoxO1 and PPARγ, two transcription factors that regulate Pdx1 expression.
Using in silico analyses and reading the primary literature, I found that both contain Cdk4 consensus
phosphorylate sites. Therefore, I will determine whether Cdk4 acts via either or both of these to maintain beta
cell differentiation. If Cdk4 plays atypical roles as a kinase to influence multiple aspects of beta cell biology,
this may lead to better therapeutic options for preserving beta cell mass, function and differentiation in T2D.
!
项目总结
在美国,2型糖尿病(T2D)是一个主要的公共卫生问题,约有9.3%的
患有这种疾病的人口。此外,8600万人患有糖尿病前期和经济上的
影响是惊人的,每10个医疗保健美元中就有1个花在T2D及其并发症上。T2D结果
胰岛素抵抗和减少的β细胞质量;因此,增加功能性β细胞质量的策略是
糖尿病研究的关键目标。虽然(从啮齿动物模型)已经得到了很好的证实,但增加Beta
细胞质量是由增强的β细胞增殖引起的,新的研究表明,β细胞去分化
也会降低β细胞的功能。参与细胞周期G1/S转换的一些蛋白质,
尤其是CDK4,对维持β细胞的增殖和质量至关重要。胰岛素受体底物2
基因敲除(Irs2 KO)小鼠由于外周胰岛素抵抗和β细胞质量减少而发展为糖尿病,以及
我们之前发现,在体外重新表达细胞周期蛋白D2,激活CDK4,挽救了细胞周期蛋白D2的丢失
缺乏irs2的β细胞的增殖。因此,我们假设了一种结构性活跃的表达
CDK4(CDK4R24C)有可能挽救Irs2KO小鼠的糖尿病表型。有趣的是,
初步结果表明,CDK4 R24C不仅能够完全挽救β细胞团,而且还能够
胰岛素分泌与β细胞分化。有趣的是,最近的研究表明,CDK4激酶在
许多角色独立于其在细胞周期中的已知活动。因此,这项建议的目标是
确定这种救援背后的机制,并确定CDK4在β细胞中扮演的非典型角色。在……里面
目的1,我们将确定CDK4如何挽救β细胞的增殖,集中在两个典型的CDK4-Rb-
E2F途径,并将使用BioID识别β细胞中新的CDK4相互作用因子。在目标2中,我们将
确定CDK4 R24C是否能通过两种胰岛灌流挽救Irs2 KO胰岛的第一或第二时相胰岛素分泌
以及高血糖钳夹研究。我们还将进行分子研究,以确定KATPase
之前被报道为CDK4-Rb-E2F1途径靶点的Kir6.2基因被上调,并被
足以挽救Irs2KO胰岛的胰岛素分泌。最后,在目标3中,我们将探索CDK4 R24C如何能够
以恢复β细胞分化标志物。这是令人惊讶和有趣的,因为它与数据相反
表明当贝塔细胞增殖时,它们会失去分化标志物,我认为最有可能的是
对此的解释是,CDK4的作用与其细胞周期活动无关。我会调查CDK4是如何拯救
Pdx1表达,重点是FoxO1和PPARγ,这两个转录因子调节Pdx1的表达。
在计算机分析和阅读主要文献中,我发现两者都含有CDK4共识
磷酸化部位。因此,我将确定CDK4是否通过这两种方式中的一种或两种来维持beta
细胞分化。如果CDK4扮演着非典型的角色,作为一种激酶来影响β细胞生物学的多个方面,
这可能会导致更好的治疗选择,以保存T2D中的β细胞质量、功能和分化。
好了!
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rachel Eileen Stamateris其他文献
Rachel Eileen Stamateris的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rachel Eileen Stamateris', 18)}}的其他基金
Mechanism of cdk4 diabetes rescue in IRS2 knockout mice
IRS2敲除小鼠cdk4糖尿病拯救机制
- 批准号:
9975146 - 财政年份:2018
- 资助金额:
$ 3.3万 - 项目类别:
相似海外基金
Linkage of HIV amino acid variants to protective host alleles at CHD1L and HLA class I loci in an African population
非洲人群中 HIV 氨基酸变异与 CHD1L 和 HLA I 类基因座的保护性宿主等位基因的关联
- 批准号:
502556 - 财政年份:2024
- 资助金额:
$ 3.3万 - 项目类别:
Olfactory Epithelium Responses to Human APOE Alleles
嗅觉上皮对人类 APOE 等位基因的反应
- 批准号:
10659303 - 财政年份:2023
- 资助金额:
$ 3.3万 - 项目类别:
Deeply analyzing MHC class I-restricted peptide presentation mechanistics across alleles, pathways, and disease coupled with TCR discovery/characterization
深入分析跨等位基因、通路和疾病的 MHC I 类限制性肽呈递机制以及 TCR 发现/表征
- 批准号:
10674405 - 财政年份:2023
- 资助金额:
$ 3.3万 - 项目类别:
An off-the-shelf tumor cell vaccine with HLA-matching alleles for the personalized treatment of advanced solid tumors
具有 HLA 匹配等位基因的现成肿瘤细胞疫苗,用于晚期实体瘤的个性化治疗
- 批准号:
10758772 - 财政年份:2023
- 资助金额:
$ 3.3万 - 项目类别:
Identifying genetic variants that modify the effect size of ApoE alleles on late-onset Alzheimer's disease risk
识别改变 ApoE 等位基因对迟发性阿尔茨海默病风险影响大小的遗传变异
- 批准号:
10676499 - 财政年份:2023
- 资助金额:
$ 3.3万 - 项目类别:
New statistical approaches to mapping the functional impact of HLA alleles in multimodal complex disease datasets
绘制多模式复杂疾病数据集中 HLA 等位基因功能影响的新统计方法
- 批准号:
2748611 - 财政年份:2022
- 资助金额:
$ 3.3万 - 项目类别:
Studentship
Recessive lethal alleles linked to seed abortion and their effect on fruit development in blueberries
与种子败育相关的隐性致死等位基因及其对蓝莓果实发育的影响
- 批准号:
22K05630 - 财政年份:2022
- 资助金额:
$ 3.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Genome and epigenome editing of induced pluripotent stem cells for investigating osteoarthritis risk alleles
诱导多能干细胞的基因组和表观基因组编辑用于研究骨关节炎风险等位基因
- 批准号:
10532032 - 财政年份:2022
- 资助金额:
$ 3.3万 - 项目类别:
Investigating the Effect of APOE Alleles on Neuro-Immunity of Human Brain Borders in Normal Aging and Alzheimer's Disease Using Single-Cell Multi-Omics and In Vitro Organoids
使用单细胞多组学和体外类器官研究 APOE 等位基因对正常衰老和阿尔茨海默病中人脑边界神经免疫的影响
- 批准号:
10525070 - 财政年份:2022
- 资助金额:
$ 3.3万 - 项目类别:
Leveraging the Evolutionary History to Improve Identification of Trait-Associated Alleles and Risk Stratification Models in Native Hawaiians
利用进化历史来改进夏威夷原住民性状相关等位基因的识别和风险分层模型
- 批准号:
10689017 - 财政年份:2022
- 资助金额:
$ 3.3万 - 项目类别: