Re-purposing the small-molecule drug, tafamidis (CAP4349) for the non-surgical treatment of cataracts

重新利用小分子药物他法米迪 (CAP4349) 用于非手术治疗白内障

基本信息

  • 批准号:
    10202617
  • 负责人:
  • 金额:
    $ 14.93万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-01 至 2023-06-30
  • 项目状态:
    已结题

项目摘要

Project Summary Cataract, the clouding of the eye lens is responsible for 51% of world blindness. According to World Health Organization nearly 18 million people are bilaterally blind from cataracts in the world. Cataract is easily treated by surgery. However, surgery is associated with significant complications: (i) 30-50% of patients in the US having cataract surgery develop opacification of the posterior lens capsule within two years and require laser treatment; (ii) 0.8% have retinal detachments; (iii) 0.6-1.3% are hospitalized for corneal edema or require corneal transplantation and (iv) about 1% are presented with endophthalmitis. In addition, in many remote and poor areas of the developing and under-developed regions of the world, people still remain blind from cataracts, primarily due to lack of access to eye care. As a result of which, cataract related blindness is as high as 50% or more in poor and remote regions of the world compared to only 5% in developed countries. Alpha-crystallin (AC) is one of the three major eye lens crystallins and is a representative member of the small heat shock protein family. AC serves as molecular chaperone, protecting damaged or aged lens proteins and enzymes from aggregation that would otherwise lead to light scattering and cataract formation. It is well established that chaperone-like activity (CLA) of AC is critical for lens transparency and it is hypothesized that maintaining optimal or increasing chaperone activity might aid in the prevention or slowing of cataracts. The rationale of our proposal is based on the observation that small molecule pharmacological agents from natural sources can prevent the loss of CLA of Alpha crystallin A-chain (AAC) and can delay cataract formation in preclinical models. It has been estimated that delaying cataracts formation by 10 years can reduce the Medicare vision care expense by 50%. Our preliminary data supports the hypothesis that an FDA approved small-molecule drug, tafamidis (CAP4349) increases AAC CLA and maintains transparency of the eye lens in organ culture experiments of cataract model. However, tafamids and its salts exhibit extremely poor aqueous solubility, limiting its potential as an ophthalmic drug. Therefore, the basic goal of our proposal is: optimization of tafamids to improve its solubility by using prodrug concept and demonstrate its potential as a promising topical anti-cataract agent using the following specific aims. Aim 1a. Design and synthesis of prodrugs of CAP4349. Aim 1b. Enzymatic evaluation of conversion of prodrugs into active metabolite. Aim 2a. Formulation of prodrugs for topical route of delivery to achieve enhanced corneal permeation and metabolic conversion. Aim 2b. Evaluation of compounds for corneal permeation and metabolic conversion using 3D human organotypic corneal tissue model. Aim 3a. Seven day repeat topical dose acute toxicity and safety in New Zealand white rabbits. Aim 3b. In-vivo ocular pharmacokinetics. Project milestone: Successful completion of these aims will identify a minimum of two optimized tafamids prodrugs with acceptable in-vivo efficacy and acceptable ocular PK to be advanced into non-GLP preclinical development and GLP enabling IND studies (Phase II).
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sambaiah Thota其他文献

Sambaiah Thota的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 14.93万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 14.93万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 14.93万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 14.93万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 14.93万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 14.93万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 14.93万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 14.93万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 14.93万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 14.93万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了