Volumetric optical connectome microscopy of human cerebellar circuitry
人体小脑回路的体积光学连接组显微镜
基本信息
- 批准号:10212518
- 负责人:
- 金额:$ 24.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-08 至 2023-04-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalActivities of Daily LivingAdvocateAffectAnatomyArchitectureAtaxiaAtlasesAtrophicAutopsyAwardAwarenessAxonBackBiological MarkersBiomedical TechnologyBoaBrainBrain DiseasesBrain StemCell NucleusCerebellar AtaxiaCerebellar DiseasesCerebellumCharacteristicsClinicalClinical ResearchClinical assessmentsCognitiveCommunitiesComplementComplexDataData SetDegenerative DisorderDevelopmentDiagnosisDiseaseDisease ProgressionEmotionalEnvironmentFaceFailureFiberGeneral HospitalsGoalsHistologyHumanImageIncidenceIndividualInterdisciplinary StudyInterneuronsInterventionKnowledgeLabelLeadLobuleLocationMagnetic Resonance ImagingMapsMassachusettsMeasuresMentorsMethodsMicroscopicMicroscopyModelingMorphologyMultiple System AtrophyNerve DegenerationNeuroanatomyNeurobiologyNeurodegenerative DisordersNeuronsNeurosciencesOptical Coherence TomographyOpticsOutputPathologicPathologyPathway interactionsPatternPhasePhenotypePopulationPrincipal InvestigatorResearchResearch PersonnelResearch Project GrantsResolutionRoleSamplingScanningScienceSliceSpinocerebellar AtaxiasStructureTechniquesTechnologyTestingTherapeutic InterventionTissuesTrainingTraining ProgramsWorkWritingbasebrain circuitrybrain healthbrain tissueclinical diagnosticscognitive functionconnectomeexperiencegray matterhistological stainshuman diseasein vivolight microscopymicroscopic imagingmultidisciplinarynervous system disorderneuroimagingneuropathologynovel markerpolarized lightpreservationprogramsreconstructionscale upskillstoolultra high resolutionwhite matter
项目摘要
Project Summary/Abstract
The goal in seeking a K99/R00 Pathway to Independence Award is to establish myself as an independent
principal investigator to study the structural-functional relationship of the brain circuitry in normal and brain
disorders. The proposed project, driven by the need for understanding the human brain with high-resolution
high-throughput tools and my extensive experience in biomedical optics for neuroimaging, aims to establish a
versatile tool to reconstruct the circuitry and neuronal architecture in human cerebellum, understand the
disruptive impacts of cerebellar degenerative disease, and combine with MRI models to seek novel biomarkers
that will potentially influence the clinical assessment.
Despite the tremendous advances of light microscopy since Santiago Ramón y Cajal's pioneering work in
drafting axonal tracts, our knowledge on how the 80-100 billions of neurons connect together to form complex
functions in human brain is still limited. Presently, there is no volumetric microscopy technique that can map
the circuitry and architecture of human brain with high integrity. Here I propose to develop a volumetric optical
connectome microscopy (VOCM), for reconstructing the human cerebellum with unprecedented resolution and
scales, and mapping the connectivity and neuronal architectures from a global perspective. VOCM is based on
a polarization sensitive optical coherence tomography and a vibratome slicer to image large-scale ex vivo brain
at a micrometer-scale resolution. Importantly, this technology allows volumetric reconstruction preserving an
ultra-high accuracy without tissue distortions; therefore overcomes the 100 years challenge of all histology
based methods in tracing long fiber tracts and inspecting sophisticated cortical folding in the human brain. The
high-quality data generated by VOCM will be fit into MRI models to construct an ultra-high resolution atlas of
human cerebellum to provide anatomical labels that are not available in current MRI tools.
By applying VOCM, the project further explores 3D pathological patterns of cerebellar disorder. Multiple system
atrophy cerebellar type (MSA-C) is a fatal neurodegenerative disease manifested by severe cerebellar and
brainstem atrophy. Despite its rare incidence, MSA-C shares common phenotypic characteristics with other
neurological diseases. Studying the neuroanatomical substrates and pathological trajectory of MSA-C could
advance our understanding of the impact of cerebellar disorders and cerebellar affected diseases. Particularly,
the project will characterize the architecture and circuitry disruptions associated with neurodegeneration in
MSA-C. We will then use the high-resolution ex vivo dataset to make predictions in vivo, and allow an MRI
assessment that would not be possible otherwise.
The proposed research is conducted at Martinos Center, Massachusetts General Hospital (MGH), which is an
ideal environment developing cutting edge biomedical technologies and interacting with a large community of
experts with multidisciplinary background. I have formed a strong mentoring team: Dr. Bruce Fischl, director of
the Computational Core at Martinos Center; Dr. David Boas, director of the Optics Division at Martinos Center;
and Dr. Jeremy Schmahmann, director of the MGH Ataxia Unit. I will leverage formal trainings in MRI modeling
and analysis, cerebellar related brain diseases and neuropathology. The coursework on neuroanatomy,
neurobiology and central nervous diseases complement my biomedical optics background and advance my
knowledge on important neuroscience questions. The proposed trainings and research will prepare me with
necessary skills, new tools, and intriguing data to launch an independent research program and writing further
research grants after the completion of the R00 phase. I expect that the research will dramatically advance our
current knowledge on brain science, have an impact on clinical revolutions, and advocate public awareness of
brain health in greater populations.
项目摘要/摘要
寻求K99/R00独立之路奖的目标是将自己确立为独立人士
研究正常人和脑内脑回路结构与功能关系的首席研究员
精神错乱。拟议的项目,由高分辨率理解人脑的需求驱动
高通量工具和我在用于神经成像的生物医学光学方面的丰富经验,旨在建立一个
重建人类小脑电路和神经元结构的通用工具,了解
小脑退行性疾病的破坏性影响,并结合MRI模型寻找新的生物标志物
这可能会影响临床评估。
尽管自圣地亚哥·拉蒙·卡哈尔的开创性工作
绘制轴突束,我们关于800-1000亿个神经元如何连接在一起形成复合体的知识
人脑的功能仍然有限。目前,还没有体积显微镜技术可以绘制
人脑的电路和结构具有高度的完整性。在这里,我建议开发一种体积光学
连接组显微镜(VOCM),用于以前所未有的分辨率重建人类小脑和
规模,并从全球角度绘制连接和神经元结构图。VOCM基于
偏振敏感光学相干层析成像和振动切片机对大范围离体脑的成像
以微米级的分辨率。重要的是,这项技术允许体积重建保持
超高精度,无组织扭曲;因此克服了所有组织学100年来的挑战
基于追踪人类大脑中的长纤维束和检查复杂的皮质折叠的方法。这个
VOCM生成的高质量数据将适用于MRI模型,以构建超高分辨率的
人类小脑提供了当前MRI工具所不能提供的解剖标记。
通过应用VOCM,该项目进一步探索了小脑疾病的3D病理模式。多系统
小脑萎缩型(MSA-C)是一种致命性神经退行性疾病,表现为严重的小脑和
脑干萎缩。尽管发病率很低,但MSA-C与其他
神经系统疾病。研究MSA-C的神经解剖学基础和病理轨迹可以
促进我们对小脑疾病和小脑病变的影响的理解。尤其是,
该项目将描述与神经退行性变相关的结构和电路中断
MSA-C然后,我们将使用高分辨率的体外数据集在体内进行预测,并允许进行MRI
否则,这是不可能的评估。
这项拟议的研究是在马萨诸塞州综合医院(MGH)的Martinos中心进行的,该中心是一家
开发尖端生物医学技术并与大型社区互动的理想环境
具有多学科背景的专家。我已经组建了一个强大的指导团队:Bruce Fischl博士,主任
马蒂诺斯中心计算核心;马蒂诺斯中心光学部主任大卫·博阿斯博士;
以及MGH共济失调中心主任Jeremy Schmahmann博士。我将利用核磁共振建模中的正式培训
并分析与小脑相关的脑部疾病和神经病理学。神经解剖学的课程作业,
神经生物学和中枢神经疾病补充了我的生物医学光学背景,并促进了我的
关于重要的神经科学问题的知识。拟议的培训和研究将为我做好准备
必要的技能、新工具和有趣的数据,以启动独立的研究计划并进一步写作
在R00阶段完成后的研究补助金。我预计这项研究将极大地推动我们的
脑科学的最新知识,对临床革命产生影响,并倡导公众意识
在更大的人群中保持大脑健康。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hui Wang其他文献
Hui Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hui Wang', 18)}}的其他基金
Development of beam-offset optical coherence tomography
光束偏移光学相干断层扫描技术的发展
- 批准号:
10666910 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Novel Volumetric Optical Microscopy to Unravel Cerebral Microvascular Architecture and the Role in Functional Neuroimaging in Human Alzheimer's Disease
新型体积光学显微镜揭示大脑微血管结构及其在人类阿尔茨海默氏病功能神经影像中的作用
- 批准号:
10669745 - 财政年份:2022
- 资助金额:
$ 24.9万 - 项目类别:
Developmental sensorimotor and cognitive pathways in infant cerebellum with multi-scale imaging
多尺度成像婴儿小脑发育感觉运动和认知通路
- 批准号:
10461075 - 财政年份:2021
- 资助金额:
$ 24.9万 - 项目类别:
Developmental sensorimotor and cognitive pathways in infant cerebellum with multi-scale imaging
多尺度成像婴儿小脑发育感觉运动和认知通路
- 批准号:
10286964 - 财政年份:2021
- 资助金额:
$ 24.9万 - 项目类别:
Volumetric optical connectome microscopy of human cerebellar circuitry
人体小脑回路的体积光学连接组显微镜
- 批准号:
10245316 - 财政年份:2020
- 资助金额:
$ 24.9万 - 项目类别:
Volumetric optical connectome microscopy of human cerebellar circuitry
人体小脑回路的体积光学连接组显微镜
- 批准号:
10414815 - 财政年份:2020
- 资助金额:
$ 24.9万 - 项目类别:
Functional study of a novel gene involved in human retinal disease
与人类视网膜疾病相关的新基因的功能研究
- 批准号:
8114011 - 财政年份:2009
- 资助金额:
$ 24.9万 - 项目类别:
Functional study of a novel gene involved in human retinal disease
与人类视网膜疾病相关的新基因的功能研究
- 批准号:
7613664 - 财政年份:2009
- 资助金额:
$ 24.9万 - 项目类别:
Functional study of a novel gene involved in human retinal disease
与人类视网膜疾病相关的新基因的功能研究
- 批准号:
7923225 - 财政年份:2009
- 资助金额:
$ 24.9万 - 项目类别:
相似海外基金
Determining 4-Dimensional Foot Loading Profiles of Healthy Adults across Activities of Daily Living
确定健康成年人日常生活活动的 4 维足部负荷曲线
- 批准号:
2473795 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Studentship
Developing a trunk function assessment for hemiplegics. -For improving activities of daily living-
开发偏瘫患者的躯干功能评估。
- 批准号:
23K10540 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Relation with the activities of daily living and the subjective values among people with social withdrawal
社交退缩者日常生活活动与主观价值观的关系
- 批准号:
23K16596 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CRII: RI: Understanding Activities of Daily Living in Indoor Scenarios
CRII:RI:了解室内场景中的日常生活活动
- 批准号:
2245652 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Standard Grant
Association between Nursing Care and Prognosis and Activities of Daily Living in Acute Stroke patients by using Big Data.
利用大数据研究急性脑卒中患者的护理与预后和日常生活活动的关系。
- 批准号:
23K16412 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Sources of vulnerability among those using homecare despite having no limitations in Activities of Daily Living. An intersectionality analysis
尽管日常生活活动没有限制,但使用家庭护理的人的脆弱性来源。
- 批准号:
499112 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Operating Grants
Synergizing home health rehabilitation therapy to optimize patients’ activities of daily living
协同家庭健康康复治疗,优化患者的日常生活活动
- 批准号:
10429480 - 财政年份:2022
- 资助金额:
$ 24.9万 - 项目类别:
Effects of a model of nurses-occupational therapists collaborative practice on activities of daily living in elderly patients
护士-职业治疗师合作实践模式对老年患者日常生活活动的影响
- 批准号:
22K17540 - 财政年份:2022
- 资助金额:
$ 24.9万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Assessing a Novel Virtual Environment that Primes Individuals Living with AD/ADRD to Accomplish Activities of Daily Living.
评估一种新颖的虚拟环境,该环境可以帮助 AD/ADRD 患者完成日常生活活动。
- 批准号:
10668160 - 财政年份:2022
- 资助金额:
$ 24.9万 - 项目类别:
Synergizing home health rehabilitation therapy to optimize patients’ activities of daily living
协同家庭健康康复治疗,优化患者的日常生活活动
- 批准号:
10621820 - 财政年份:2022
- 资助金额:
$ 24.9万 - 项目类别: