Development of beam-offset optical coherence tomography
光束偏移光学相干断层扫描技术的发展
基本信息
- 批准号:10666910
- 负责人:
- 金额:$ 57.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-21 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:Burn injuryClassificationClinicClinicalConsumptionDataDerivation procedureDermatologyDetectionDevelopmentEnsureFrequenciesFutureGoalsHeterogeneityHumanImageImmuneKnowledgeLateralLightingMeasuresMethodsModelingMonitorMorphologic artifactsMotionNatural regenerationNeuronsNewtsOphthalmologyOptical Coherence TomographyOpticsPatientsPhotonsPositioning AttributePredispositionPropertyRefractive IndicesResolutionRetinaRetrievalShapesSkinSpeedSystemTechnologyTimeTissue imagingTissuesTrainingTranslatingVariantVoiceadaptive opticsattenuationburn woundcellular imagingclinical diagnosticscostdesigndiagnostic valuehealinghuman imagingimaging modalityimprovedin vivoin vivo evaluationin vivo imaginglong short term memorymedical specialtiesmethod developmentnon-invasive monitornovelphoton-counting detectorretinal imagingretinal regenerationsensor
项目摘要
Project Summary
For cellular imaging in deep tissue, adaptive optics OCT (AO-OCT) has been intensively developed by
reshaping the wavefront of the illumination beam to focus the beam to diffraction-limited point spread
function (PSF) in a targeted region. Due to its complexity, cost, and size, wavefront sensor-based AO-OCT
is challenging to be translated into clinics. Less complicated sensorless AO-OCT(SAO-OCT) optimizes
the PSF using image metrics, but cannot ensure global optimization and is susceptible to motion artifacts
because image metrics must be strong and steady during the optimizing iteration. A trained Artificial neuron
network (ANNs) can optimize the wavefront immediately, much more efficiently than the conventional
optimization through multiple iterations. However, training ANNs with the image metric limits the
generality of the ANN. We believe that the best metric for SAO-OCT should be either the PSF or its
frequency domain equivalent, modulated transfer function (MTF), as they are the goals for optimization
and are independent of the imaged subjects and system optics. However, the technology of accessing
PSF/MTF in a scattering medium with OCT has not been proposed.OCT images originate from
backscattered photons due to refractive index variation in tissue. New contrast, tissue property-related
optical attenuation coefficient (OAC), has been extensively investigated to improve the diagnostic
capability of OCT. However, deriving OAC is mainly based on the single-scattering model, which ignores
MSPs, as conventional OCT cannot distinguish LSPs and MSPs. In addition, the single-scattering model
relies on at least three interdependent parameters. Prior knowledge is needed to ensure deriving OAC
successfully, but obtaining it in a clinical setting is not practical. These limitations have prohibited OAC
measuring from being translated into clinics. Here, we propose reconstructing backscattered photon
distribution(BPD) in a scattering medium with beam-offset OCT (BO-OCT) to resolve the above
challenges. In conventional OCT, the illumination and detection beams share the same optical paths. In
BO-OCT, the detection beam acquires images at offset positions from the illumination beam. The BPD can
then be reconstructed with the offset images. Our theoretical prediction and preliminary data show that the
distribution of LSPs is equivalent to the depth-resolved MTF, suggesting SAO-OCT can be implemented
using the MTF as the metric. With the BPD, we also show it is feasible to separate LSPs and MSPs, allowing
for accurately retrieving OAC by using just the LSPs to fit the single-scattering model. Real-time accessing
focal depth and Rayleigh range through the BPD allow incorporating the variation of these parameters into
modeling, suggesting a new method immune from motion artifacts.
项目摘要
对于深部组织中的细胞成像,自适应光学OCT(AO-OCT)已经被广泛开发,
对所述照明光束的所述波前进行整形以将所述光束聚焦到衍射受限点扩展
在目标区域中的函数(PSF)。由于其复杂性、成本和尺寸,基于波前传感器的声光OCT
很难将其转化为诊所。更简单的无传感器AO-OCT(SAO-OCT)优化了
PSF使用图像度量,但不能确保全局优化,并且容易受到运动伪影的影响
因为图像度量在优化迭代期间必须是强的和稳定的。经过训练的人工神经元
人工神经网络(ANN)可以立即优化波前,比传统的更有效
通过多次迭代进行优化。然而,用图像度量训练ANN限制了
我们认为,SAO-OCT的最佳度量应该是PSF或其
频域等效调制传递函数(MTF),因为它们是优化的目标
并且独立于成像对象和系统光学器件。然而,接入技术
还没有提出具有OCT的散射介质中的PSF/MTF。
由于组织中的折射率变化而导致的反向散射光子。新造影剂,组织特性相关
光学衰减系数(OAC),已被广泛研究,以提高诊断
然而,推导OAC主要基于单散射模型,该模型忽略了
MSP,因为常规OCT不能区分LSP和MSP。此外,单次散射模型
依赖于至少三个相互依赖的参数。需要先验知识以确保导出OAC
成功地,但在临床环境中获得它是不实际的。这些限制禁止OAC
从转化到诊所。在这里,我们提出重建后向散射光子
图10示出了利用光束偏移OCT(BO-OCT)在散射介质中的BPD分布(BPD)来解决上述问题的方法。
挑战在常规OCT中,照明光束和检测光束共享相同的光路。在
在BO-OCT中,检测光束在偏离照明光束的位置处获取图像。BPD可以
然后用偏移图像重建。我们的理论预测和初步数据表明,
LSP的分布与深度分辨MTF相当,表明可以实现SAO-OCT
使用MTF作为度量。利用BPD,我们还表明分离LSP和MSP是可行的,
通过仅使用LSP来拟合单散射模型来精确地检索OAC。实时访问
通过BPD的焦深和瑞利范围允许将这些参数的变化合并到
建模,提出了一种新的方法免疫运动伪影。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hui Wang其他文献
Hui Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hui Wang', 18)}}的其他基金
Novel Volumetric Optical Microscopy to Unravel Cerebral Microvascular Architecture and the Role in Functional Neuroimaging in Human Alzheimer's Disease
新型体积光学显微镜揭示大脑微血管结构及其在人类阿尔茨海默氏病功能神经影像中的作用
- 批准号:
10669745 - 财政年份:2022
- 资助金额:
$ 57.49万 - 项目类别:
Developmental sensorimotor and cognitive pathways in infant cerebellum with multi-scale imaging
多尺度成像婴儿小脑发育感觉运动和认知通路
- 批准号:
10461075 - 财政年份:2021
- 资助金额:
$ 57.49万 - 项目类别:
Developmental sensorimotor and cognitive pathways in infant cerebellum with multi-scale imaging
多尺度成像婴儿小脑发育感觉运动和认知通路
- 批准号:
10286964 - 财政年份:2021
- 资助金额:
$ 57.49万 - 项目类别:
Volumetric optical connectome microscopy of human cerebellar circuitry
人体小脑回路的体积光学连接组显微镜
- 批准号:
10212518 - 财政年份:2020
- 资助金额:
$ 57.49万 - 项目类别:
Volumetric optical connectome microscopy of human cerebellar circuitry
人体小脑回路的体积光学连接组显微镜
- 批准号:
10245316 - 财政年份:2020
- 资助金额:
$ 57.49万 - 项目类别:
Volumetric optical connectome microscopy of human cerebellar circuitry
人体小脑回路的体积光学连接组显微镜
- 批准号:
10414815 - 财政年份:2020
- 资助金额:
$ 57.49万 - 项目类别:
Functional study of a novel gene involved in human retinal disease
与人类视网膜疾病相关的新基因的功能研究
- 批准号:
8114011 - 财政年份:2009
- 资助金额:
$ 57.49万 - 项目类别:
Functional study of a novel gene involved in human retinal disease
与人类视网膜疾病相关的新基因的功能研究
- 批准号:
7613664 - 财政年份:2009
- 资助金额:
$ 57.49万 - 项目类别:
Functional study of a novel gene involved in human retinal disease
与人类视网膜疾病相关的新基因的功能研究
- 批准号:
7923225 - 财政年份:2009
- 资助金额:
$ 57.49万 - 项目类别:
相似海外基金
Developing a Census Based Generative Geodemographic Classification System
开发基于人口普查的生成地理人口分类系统
- 批准号:
ES/Z50273X/1 - 财政年份:2024
- 资助金额:
$ 57.49万 - 项目类别:
Research Grant
Postdoctoral Fellowship: EAR-PF: Establishing a new eruption classification with a multimethod approach
博士后奖学金:EAR-PF:用多种方法建立新的喷发分类
- 批准号:
2305462 - 财政年份:2024
- 资助金额:
$ 57.49万 - 项目类别:
Fellowship Award
Classification of contemporary Kansai dialects
当代关西方言的分类
- 批准号:
24K03842 - 财政年份:2024
- 资助金额:
$ 57.49万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
BBSRC-NSF/BIO: An AI-based domain classification platform for 200 million 3D-models of proteins to reveal protein evolution
BBSRC-NSF/BIO:基于人工智能的域分类平台,可用于 2 亿个蛋白质 3D 模型,以揭示蛋白质进化
- 批准号:
BB/Y000455/1 - 财政年份:2024
- 资助金额:
$ 57.49万 - 项目类别:
Research Grant
BBSRC-NSF/BIO: An AI-based domain classification platform for 200 million 3D-models of proteins to reveal protein evolution
BBSRC-NSF/BIO:基于人工智能的域分类平台,可用于 2 亿个蛋白质 3D 模型,以揭示蛋白质进化
- 批准号:
BB/Y001117/1 - 财政年份:2024
- 资助金额:
$ 57.49万 - 项目类别:
Research Grant
From single-cell transcriptomic to single-cell fluxomic: characterising metabolic dysregulations for breast cancer subtype classification
从单细胞转录组到单细胞通量组:表征乳腺癌亚型分类的代谢失调
- 批准号:
EP/Y001613/1 - 财政年份:2024
- 资助金额:
$ 57.49万 - 项目类别:
Research Grant
Particle classification and identification in cryoET of crowded cellular environments
拥挤细胞环境中 CryoET 中的颗粒分类和识别
- 批准号:
BB/Y514007/1 - 财政年份:2024
- 资助金额:
$ 57.49万 - 项目类别:
Research Grant
Enhanced X-ray material classification using SiPMs and fast scintillators
使用 SiPM 和快速闪烁体增强 X 射线材料分类
- 批准号:
2905969 - 财政年份:2024
- 资助金额:
$ 57.49万 - 项目类别:
Studentship
OAC Core: Enhancing Network Security by Implementing an ML Malware Detection and Classification Scheme in P4 Programmable Data Planes and SmartNICs
OAC 核心:通过在 P4 可编程数据平面和智能网卡中实施 ML 恶意软件检测和分类方案来增强网络安全
- 批准号:
2403360 - 财政年份:2024
- 资助金额:
$ 57.49万 - 项目类别:
Standard Grant
EAGER: IMPRESS-U: Exploratory Research in Robust Machine Learning for Object Detection and Classification
EAGER:IMPRESS-U:用于对象检测和分类的鲁棒机器学习的探索性研究
- 批准号:
2415299 - 财政年份:2024
- 资助金额:
$ 57.49万 - 项目类别:
Standard Grant