Quantitative, Image-Based Osteoarthritis Biomarkers Software Resubmission

基于图像的定量骨关节炎生物标志物软件重新提交

基本信息

  • 批准号:
    10207857
  • 负责人:
  • 金额:
    $ 45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-01 至 2022-08-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY Musculoskeletal diseases are common in the United States, especially among the elderly and individuals of low socioeconomic status, and they take a large toll on the Nation's overall health status. Bone disorders are diagnosed by exploring a patient's medical history and by physical exam, alongside laboratory tests, bone biopsies, and imaging tests. Bone imaging tests provide a non-invasive way to examine at bone structure. However, imaging data is often evaluated qualitatively or with operator dependence as opposed to automated or quantitative measurements. These quantitative measurements are not sensitive enough to detect subtle variations in bone quality associated with early disease progression. We propose the development of high performance, multimodal, and automated 3D bone characterization tools, which are accessible through a web browser. A broad range of researchers and clinicians can leverage these tools to obtain high-throughput, reproducible biomarkers for statistically sensitive research studies. The system will automatically segment bone and cartilage and quantify biomarkers from the regions of interest. The proposed system will have superior high-throughput capabilities over existing bone image analysis suites, and it will provide access to state-of-the-art algorithms for researchers without programming abilities. In addition to providing a powerful resource to the research community, we will commercialize this complete, streamlined analytical solution by offering it as an online fee-per-image processing service. Our system will be validated by demonstrating that we can detect skeletal deterioration in preclinical studies, which can potentially lead to new clinical trials for novel therapeutic and diagnostic approaches in humans. We will test the hypothesis that the system can automatically identify osteoarthritis in knee images from the Osteoarthritis Initiative database and differentiate hemophilia in micro-computed tomography images. The ultimate goal of the proposed project is to lead to better preventive strategies and improved progression monitoring of osteoarthritis and related diseases.
项目摘要 肌肉骨骼疾病在美国很常见,尤其是在老年人和老年人中。 社会经济地位低下,他们对国家的整体健康状况造成了很大的影响。骨骼疾病是 通过探索患者的病史和体格检查,以及实验室检查,骨 活组织检查和影像学检查骨成像测试提供了一种非侵入性的方式来检查骨结构。然而,在这方面, 成像数据通常被定性地或依赖于操作者地评估 测量.这些定量测量不够灵敏,无法检测骨骼的细微变化 与早期疾病进展相关的质量。我们建议开发高性能,多模式, 和自动化3D骨骼表征工具,可通过Web浏览器访问。广泛 的研究人员和临床医生可以利用这些工具获得高通量,可重复的生物标志物, 统计敏感性研究。该系统将自动分割骨骼和软骨并进行量化 来自感兴趣区域的生物标志物。所提出的系统将具有上级高通量能力 它将为研究人员提供最先进的算法, 没有编程能力。除了为研究界提供强大的资源外,我们还将 将这一完整、精简的分析解决方案商业化,提供按图像处理收费的在线服务 的服务.我们的系统将通过证明我们可以在临床前检测骨骼退化来验证, 研究,这可能会导致新的临床试验的新的治疗和诊断方法, 人类我们将测试该系统可以自动识别膝关节图像中骨关节炎的假设 从骨关节炎倡议数据库和微计算机断层扫描图像区分血友病。 拟议项目的最终目标是导致更好的预防战略和改善进展 监测骨关节炎和相关疾病。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matthew McCormick其他文献

Matthew McCormick的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Matthew McCormick', 18)}}的其他基金

A Computational Framework for Distributed Registration of Massive Neuroscience Images
海量神经科学图像分布式配准的计算框架
  • 批准号:
    10259930
  • 财政年份:
    2021
  • 资助金额:
    $ 45万
  • 项目类别:
Quantitative, Image-Based Osteoarthritis Biomarkers Software Resubmission
基于图像的定量骨关节炎生物标志物软件重新提交
  • 批准号:
    10250562
  • 财政年份:
    2019
  • 资助金额:
    $ 45万
  • 项目类别:
Prostate Cancer Assessment Via Integrated 3D ARFI Elasticity Imaging and Multi-Parametric MRI
通过集成 3D ARFI 弹性成像和多参数 MRI 进行前列腺癌评估
  • 批准号:
    8905274
  • 财政年份:
    2015
  • 资助金额:
    $ 45万
  • 项目类别:

相似海外基金

WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
  • 批准号:
    10093543
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Collaborative R&D
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
  • 批准号:
    24K16436
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
  • 批准号:
    24K16488
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
  • 批准号:
    24K20973
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    EU-Funded
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
  • 批准号:
    10075502
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
  • 批准号:
    10089082
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
  • 批准号:
    481560
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Operating Grants
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
  • 批准号:
    2321091
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了