Chemical, Structural and Cell-Signaling Interrogation of 15-Prostanglandin Dehydrogenase in Tissue Repair and Regeneration
15-前列腺素脱氢酶在组织修复和再生中的化学、结构和细胞信号传导研究
基本信息
- 批准号:10206836
- 负责人:
- 金额:$ 136.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:AdultAllelesBackcrossingsBindingBiochemistryBiological AvailabilityBiotechnologyBleomycinBone MarrowBone Marrow TransplantationBrainCXCL12 geneCell FractionCellsChemical StructureCollectionColonComplexCryoelectron MicroscopyCytokine Network PathwayCytokine SignalingDataData SetDinoprostoneDiseaseDisease modelDrug TargetingEngineeringEnzymesExclusionFoundationsFutureGrowthHematopoieticHippocampus (Brain)IndividualInflammationInjuryJointsKidney DiseasesKnock-outKnockout MiceLeadLegal patentLiverLoxP-flanked alleleMediatingMethodsMicrogliaModelingMouse StrainsMusNeuronsNeurosciencesOralOrganOxidoreductasePartial HepatectomyPatternPenetrationPeripheralPharmaceutical ChemistryPharmaceutical PreparationsPharmacologyProstaglandinsProteinsPublicationsPulmonary FibrosisRecoveryReportingResearchResolutionRodentRoleSignal TransductionSignaling MoleculeSpecificitySpleenStructureTechniquesTechnologyTherapeuticTissue ModelTissuesTraumaTraumatic Brain InjuryUlcerUlcerative Colitisanalogbasecell typecognitive functionconditional knockoutcytokinedefined contributiondesigndextran sulfate sodium induced colitisimprovedin silicoin vivoinhibitor/antagonistknockout genemRNA Expressionmacrophagemolecular dynamicsmouse modelpredictive testpreservationpreventprogramsprotein expressionresponsescaffoldsingle-cell RNA sequencingsmall moleculesmall molecule inhibitorstructural biologytherapeutic targetthree dimensional structuretissue regenerationtissue repair
项目摘要
Abstract. Prostaglandin E2 (PGE2) regulates tissue growth and repair in multiple organs. A conserved
mechanism of synthesis and degradation modulates PGE2 levels in response to trauma, inflammation and
disease. In particular, the enzyme 15-prostaglandin dehydrogenase (15-PGDH) is the main PGE2-degrading
enzyme and therefore a key regulator of tissue repair and regeneration. 15-PGDH is an attractive drug target
for diseases characterized by tissue damage. Our team successfully developed the first small molecule
inhibitors of 15-PGDH with in vivo activities. In rodents, our inhibitors 1) accelerate recovery following bone
marrow transplantation, 2) accelerate recovery from, or prevent, ulcerative colitis, 3) accelerate regrowth of
liver tissue following partial hepatectomy, 4) ameliorate pulmonary fibrosis in a bleomycin-induced disease
model, 5) enhance survival of new hippocampal neurons in adult mice, and 6) preserve cognitive function and
minimize neuronal damage in mice following traumatic brain injury. Independent reports have described
beneficial effects of 15-PGDH inhibition in models of renal disease and pulmonary fibrosis.
We now propose a collaborative chemical, structural and cell-signaling interrogation of the role and activity of
15-PGDH. Our expertise includes medicinal chemistry, biochemistry, neuroscience, pharmacology, and
structural biology. In Aim 1, we will define and exploit the structural basis for inhibition of 15-PGDH by small
molecules. This aims builds on the first cryoEM structure (2.3 Å resolution) of 15-PGDH and two unrelated
scaffolds of low-nM inhibitors of 15-PGDH. Proposed research aims to solve the structure of 15-PGDH in
complex with new small molecule inhibitors or substrate. Computational approaches will be employed to
interrogate substrate/inhibitor binding and the enzymatic mechanism. In Aim 2, we will define the cellular,
protein and cytokine signaling networks that are regulated by 15-PGDH and that are engaged by 15-PGDH
inhibitors to potentiate tissue regeneration and repair. The foundation of this aim includes the first
demonstration of 15-PGDH activity in the brain, the identification of macrophages and microglia as major
reservoirs of 15-PGDH expression in peripheral tissues and brain, respectively, and the discovery of cell and
cytokine networks that respond to inhibiting 15-PGDH. We now propose to use single-cell RNA sequencing to
determine the cell types that express 15-PGDH. Similar approaches will identify the cell-signaling network of
induced cytokines and the cell types activated to express them. These studies will be performed in mice
recovering from injury that have been treated with 15-PGDH inhibitors, along with appropriate controls. Finally,
we will engineer macrophage- and microglia-targeted 15-PGDH knockouts to define the role of 15-PGDH
expression in macrophages and microglia in mediating a conserved, cross-tissue response to PGE2 and 15-
PGDH inhibitors. This data set will provide a foundation for future advancement of therapeutics targeting 15-
PGDH and additional drug targets that modulate tissue regeneration.
抽象的。前列腺素E2(PGE2)调节多个器官的组织生长和修复。一个保守的人
合成和降解机制调节PGE2水平以应对创伤、炎症和
疾病。特别是,15-前列腺素脱氢酶(15-PGDH)是PGE2的主要降解酶
酶,因此是组织修复和再生的关键调节器。15-前列腺素脱氢酶是有吸引力的药物靶点
用于以组织损伤为特征的疾病。我们团队成功地研制出了第一个小分子
具有体内活性的15-前列腺素脱氢酶抑制剂。在啮齿动物身上,我们的抑制剂1)加速了骨骼的恢复
骨髓移植,2)加速溃疡性结肠炎的康复,或预防,3)加速再生
肝部分切除后的肝组织,4)改善博莱霉素性疾病的肺纤维化
5)提高成年小鼠新生海马神经元的存活率,6)保护认知功能和
减少小鼠创伤性脑损伤后的神经元损伤。独立报告描述了
15-前列腺素脱氢酶抑制在肾脏疾病和肺纤维化模型中的有益作用。
我们现在提出一个协作性的化学,结构和细胞信号询问的作用和活性的
15-前列腺素脱氢酶。我们的专长包括药物化学、生物化学、神经科学、药理学和
结构生物学。在目标1中,我们将定义和开发小分子抑制15-PGDH的结构基础
分子。这一目标建立在15-PGDH的第一个低温EM结构(2.3?分辨率)和两个不相关的
15-前列腺素脱氢酶的低NM抑制剂支架。拟议的研究旨在解决15-PGDH的结构
与新的小分子抑制剂或底物形成复合体。将采用计算方法来
询问底物/抑制物结合和酶机制。在目标2中,我们将定义细胞,
由15-前列腺素脱氢酶调控并由15-前列腺素脱氢酶参与的蛋白质和细胞因子信号网络
促进组织再生和修复的抑制剂。这一目标的基础包括第一个
15-前列腺素脱氢酶在脑内的活性证明,巨噬细胞和小胶质细胞是主要的
外周组织和脑组织中15-PGDH表达的储存库,以及细胞和
细胞因子网络对抑制15-前列腺素脱氢酶有反应。我们现在建议使用单细胞RNA测序来
确定表达15-前列腺素脱氢酶的细胞类型。类似的方法将确定细胞信令网络
诱导的细胞因子和被激活的细胞类型来表达它们。这些研究将在小鼠身上进行。
受伤后接受15-前列腺素脱氢酶抑制剂治疗的患者,以及适当的对照组。最后,
我们将设计巨噬细胞和小胶质细胞靶向的15-前列腺素脱氢酶基因敲除,以确定15-前列腺素脱氢酶的作用
巨噬细胞和小胶质细胞表达介导对PGE2和15-P保守的跨组织反应
前列腺素脱氢酶抑制剂。该数据集将为以15-15为目标的治疗学的未来发展提供基础
和其他调节组织再生的药物靶点。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ANDREW A PIEPER其他文献
ANDREW A PIEPER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ANDREW A PIEPER', 18)}}的其他基金
Preservation of brain NAD+ as a novel non-amyloid based therapeutic strategy for Alzheimer’s disease
保留大脑 NAD 作为阿尔茨海默病的一种新型非淀粉样蛋白治疗策略
- 批准号:
10588414 - 财政年份:2023
- 资助金额:
$ 136.1万 - 项目类别:
Chemical, Structural and Cell-Signaling Interrogation of 15-Prostanglandin Dehydrogenase in Tissue Repair and Regeneration
15-前列腺素脱氢酶在组织修复和再生中的化学、结构和细胞信号传导研究
- 批准号:
10414952 - 财政年份:2021
- 资助金额:
$ 136.1万 - 项目类别:
Neuroprotective Small Molecules as Novel Treatments for ALS
神经保护小分子作为 ALS 的新型治疗方法
- 批准号:
10002159 - 财政年份:2015
- 资助金额:
$ 136.1万 - 项目类别:
Neuroprotective Small Molecules as Novel Treatments for ALS
神经保护小分子作为 ALS 的新型治疗方法
- 批准号:
10057083 - 财政年份:2015
- 资助金额:
$ 136.1万 - 项目类别:
Neuroprotective Small Molecules as Novel Treatments for ALS
神经保护小分子作为 ALS 的新型治疗方法
- 批准号:
9280829 - 财政年份:2015
- 资助金额:
$ 136.1万 - 项目类别:
Neuroprotective Small Molecules as Novel Treatments for ALS
神经保护小分子作为 ALS 的新型治疗方法
- 批准号:
8816870 - 财政年份:2015
- 资助金额:
$ 136.1万 - 项目类别:
IN VIVO MODULATION OF THE IP3R BY PHOSPHORYLATION
通过磷酸化对 IP3R 进行体内调节
- 批准号:
6186429 - 财政年份:2000
- 资助金额:
$ 136.1万 - 项目类别:
相似海外基金
Linkage of HIV amino acid variants to protective host alleles at CHD1L and HLA class I loci in an African population
非洲人群中 HIV 氨基酸变异与 CHD1L 和 HLA I 类基因座的保护性宿主等位基因的关联
- 批准号:
502556 - 财政年份:2024
- 资助金额:
$ 136.1万 - 项目类别:
Olfactory Epithelium Responses to Human APOE Alleles
嗅觉上皮对人类 APOE 等位基因的反应
- 批准号:
10659303 - 财政年份:2023
- 资助金额:
$ 136.1万 - 项目类别:
Deeply analyzing MHC class I-restricted peptide presentation mechanistics across alleles, pathways, and disease coupled with TCR discovery/characterization
深入分析跨等位基因、通路和疾病的 MHC I 类限制性肽呈递机制以及 TCR 发现/表征
- 批准号:
10674405 - 财政年份:2023
- 资助金额:
$ 136.1万 - 项目类别:
An off-the-shelf tumor cell vaccine with HLA-matching alleles for the personalized treatment of advanced solid tumors
具有 HLA 匹配等位基因的现成肿瘤细胞疫苗,用于晚期实体瘤的个性化治疗
- 批准号:
10758772 - 财政年份:2023
- 资助金额:
$ 136.1万 - 项目类别:
Identifying genetic variants that modify the effect size of ApoE alleles on late-onset Alzheimer's disease risk
识别改变 ApoE 等位基因对迟发性阿尔茨海默病风险影响大小的遗传变异
- 批准号:
10676499 - 财政年份:2023
- 资助金额:
$ 136.1万 - 项目类别:
New statistical approaches to mapping the functional impact of HLA alleles in multimodal complex disease datasets
绘制多模式复杂疾病数据集中 HLA 等位基因功能影响的新统计方法
- 批准号:
2748611 - 财政年份:2022
- 资助金额:
$ 136.1万 - 项目类别:
Studentship
Genome and epigenome editing of induced pluripotent stem cells for investigating osteoarthritis risk alleles
诱导多能干细胞的基因组和表观基因组编辑用于研究骨关节炎风险等位基因
- 批准号:
10532032 - 财政年份:2022
- 资助金额:
$ 136.1万 - 项目类别:
Recessive lethal alleles linked to seed abortion and their effect on fruit development in blueberries
与种子败育相关的隐性致死等位基因及其对蓝莓果实发育的影响
- 批准号:
22K05630 - 财政年份:2022
- 资助金额:
$ 136.1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Investigating the Effect of APOE Alleles on Neuro-Immunity of Human Brain Borders in Normal Aging and Alzheimer's Disease Using Single-Cell Multi-Omics and In Vitro Organoids
使用单细胞多组学和体外类器官研究 APOE 等位基因对正常衰老和阿尔茨海默病中人脑边界神经免疫的影响
- 批准号:
10525070 - 财政年份:2022
- 资助金额:
$ 136.1万 - 项目类别:
Leveraging the Evolutionary History to Improve Identification of Trait-Associated Alleles and Risk Stratification Models in Native Hawaiians
利用进化历史来改进夏威夷原住民性状相关等位基因的识别和风险分层模型
- 批准号:
10689017 - 财政年份:2022
- 资助金额:
$ 136.1万 - 项目类别: