Harnessing Rare Variants for Tumor Classification

利用罕见变异进行肿瘤分类

基本信息

  • 批准号:
    10206386
  • 负责人:
  • 金额:
    $ 40.49万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-04-01 至 2024-03-31
  • 项目状态:
    已结题

项目摘要

Abstract This project concerns how to extract clinically actionable information for diagnostic purposes from mutational patterns observed from tumor sequencing panels that are increasingly being used in routine medical care of cancer patients. In recent years there has been intense scrutiny of the mutational landscape, using publicly available databases such as The Cancer Genome Atlas and other important sources of information on somatic mutations. However, the bulk of the attention has focused on major cancer genes, and especially the hotspot mutations in these genes at which mutations occur frequently. However, the vast majority of somatic mutations occur at “rare” genetic loci. Of the 1,788,153 distinct mutations that were observed in the 10,295 TCGA tumors over 92% were singletons, i.e. mutations observed in only one tumor. Moreover, when new tumors are sequenced, on average 60% of mutations observed are mutations that were not observed in TCGA. To date investigators have mostly ignored this “hidden iceberg” of potential information. Our proposal is motivated by the belief that at least a portion of these rare mutations contain important information that could be harnessed for clinical purposes. In preliminary work we have adapted statistical methods that were developed for use in analogous investigations in other scientific fields, such as species identification in ecology and language processing, and have been able to demonstrate that the probabilities of observing rare variants in known cancer genes differs markedly by gene, that these probabilities can be estimated accurately, and that for some genes the probabilities exhibit strong lineage dependency. Motivated by these findings, we propose to broaden the scope of these methods to investigate lineage dependency throughout the genome and to use the information to develop accurate tools for classifying tumors by tissue site of origin. In Aim 1, we will integrate data from various bioinformatic resources to characterize genes as well as mutations in non-coding parts of the genome on the basis of their local GC content, DNA replication timing, transcriptional activity, chromatin accessibility, and histone modification marks in the corresponding tissues-of-origin with a view to mapping lineage-dependent variation in rare and previously unobserved variants. In Aim 2, we will use this information to construct a classification tool based on a penalized hierarchical mixed-effects statistical model that permits direct use of these “meta-features” for imputing the discriminatory effects of rare and previously unseen variants. We will examine the predictive accuracy of the model using empirical validation datasets and study its computational feasibility in the context of different data settings, e.g. panel sequencing versus whole-exome and whole-genome. The ultimate goal is to create a tool for the classification of the anatomic site of origin of cancers of unknown primary and of cancers detected through screening of circulating tumor DNA in the blood.
摘要 该项目涉及如何从突变中提取临床可操作的信息用于诊断目的。 从肿瘤测序面板中观察到的模式越来越多地用于常规医疗护理, 癌症患者。近年来,人们对突变景观进行了严格的审查, 现有的数据库,如癌症基因组图谱和其他重要的信息来源,对体细胞癌的研究。 突变。然而,大部分的注意力都集中在主要的癌症基因,特别是热点 这些基因中的突变频繁发生。然而,绝大多数的体细胞突变 发生在"罕见"的基因位点。在10,295例TCGA肿瘤中观察到的1,788,153个不同突变中, 超过92%是单例,即仅在一个肿瘤中观察到突变。此外,当新肿瘤 测序后,平均60%观察到的突变是TCGA中未观察到的突变。迄今 调查人员大多忽视了这一潜在信息的"隐藏冰山"。我们的提议是出于 相信这些罕见的突变中至少有一部分包含可以利用的重要信息, 用于临床目的。在初步工作中,我们已经采用了统计方法,这些方法是为了在 其他科学领域的类似研究,如生态学和语言中的物种识别 处理,并已能够证明,观察到罕见的变异,在已知的概率 癌症基因因基因而显着不同,这些概率可以准确估计,并且对于一些 基因的概率表现出很强的谱系依赖性。基于这些发现,我们建议扩大 这些方法的范围,以调查整个基因组的谱系依赖性,并使用 这些信息有助于开发准确的工具,用于根据组织来源部位对肿瘤进行分类。在目标1中,我们将整合 来自各种生物信息学资源的数据,以表征基因以及非编码部分的突变, 基因组的基础上,其本地GC含量,DNA复制时间,转录活性,染色质 可及性和相应组织中的组蛋白修饰标记,以便进行映射 罕见和以前未观察到的变异中的谱系依赖性变异。在目标2中,我们将使用这些信息 构建一个基于惩罚分层混合效应统计模型的分类工具, 直接使用这些"元特征"来估算罕见和以前看不见的歧视性影响, 变体。我们将使用经验验证数据集检查模型的预测准确性,并研究其 不同数据设置背景下的计算可行性,例如面板测序与全外显子组 和全基因组最终的目标是建立一个工具,用于分类的解剖部位的起源, 原发性未知的癌症和通过筛选血液中的循环肿瘤DNA检测到的癌症。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Colin B Begg其他文献

Adaptation of a Mutual Exclusivity Framework to Identify Driver Mutations within Biological Pathways
采用相互排斥框架来识别生物途径中的驱动突变
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xinjun Wang;Caroline E Kostrzewa;Allison Reiner;R. Shen;Colin B Begg
  • 通讯作者:
    Colin B Begg
InterMEL: An international biorepository and clinical database to uncover predictors of survival in early-stage melanoma
InterMEL:一个国际生物储存库和临床数据库,用于揭示早期黑色素瘤的生存预测因素
  • DOI:
    10.1101/2022.05.21.22275329
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    7.9
  • 作者:
    Irene Orlow;Keimya Sadeghi;S. Edmiston;Jessica M. Kenney;Cecilia Lezcano;J. Wilmott;A. E. Cust;R. Scolyer;Graham J. Mann;Tim K. Lee;H. Burke;V. Jakrot;Pin Shang;P. Ferguson;T. Boyce;Jennifer S. Ko;Peter Ngo;P. Funchain;J. R. Rees;Kelli O’Connell;Honglin Hao;E. Parrish;K. Conway;P. Googe;D. Ollila;S. Moschos;Eva Hernando;D. Hanniford;D. Argibay;Christopher I. Amos;Jeffrey E. Lee;Iman Osman;Li;14;Luo;P.;Arshi Aurora;B. G. Rothberg;M. Bosenberg;R. Gerstenblith;C. Thompson;Paul N. Bogner;I. Gorlov;Sheri L. Holmen;E. Brunsgaard;Yvonne M Saenger;R. Shen;V. Seshan;M. Ernstoff;K. J. Busam;Colin B Begg;N. Thomas;Marianne;18;Berwick
  • 通讯作者:
    Berwick

Colin B Begg的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Colin B Begg', 18)}}的其他基金

Leveraging the Hidden Genome to Recover the Missing Heritability of Cancer
利用隐藏的基因组来恢复癌症缺失的遗传性
  • 批准号:
    10586348
  • 财政年份:
    2023
  • 资助金额:
    $ 40.49万
  • 项目类别:
Harnessing Rare Variants for Tumor Classification
利用罕见变异进行肿瘤分类
  • 批准号:
    10599861
  • 财政年份:
    2021
  • 资助金额:
    $ 40.49万
  • 项目类别:
Harnessing Rare Variants for Tumor Classification
利用罕见变异进行肿瘤分类
  • 批准号:
    10374906
  • 财政年份:
    2021
  • 资助金额:
    $ 40.49万
  • 项目类别:
Quantitative Sciences Summer Undergraduate Research Experience (QSURE) Fellowship
定量科学暑期本科生研究经验(QSURE)奖学金
  • 批准号:
    10517498
  • 财政年份:
    2017
  • 资助金额:
    $ 40.49万
  • 项目类别:
Quantitative Sciences Summer Undergraduate Research Experience (QSURE) Fellowship
定量科学暑期本科生研究经验(QSURE)奖学金
  • 批准号:
    10057361
  • 财政年份:
    2017
  • 资助金额:
    $ 40.49万
  • 项目类别:
Quantitative Sciences Summer Undergraduate Research Experience (QSURE) Fellowship
定量科学暑期本科生研究经验(QSURE)奖学金
  • 批准号:
    10311503
  • 财政年份:
    2017
  • 资助金额:
    $ 40.49万
  • 项目类别:
Biostatistic
生物统计学
  • 批准号:
    8933554
  • 财政年份:
    2014
  • 资助金额:
    $ 40.49万
  • 项目类别:
Statistical Strategies for Establishing Etiologic Heterogeneity of Tumors
建立肿瘤病因异质性的统计策略
  • 批准号:
    8368187
  • 财政年份:
    2012
  • 资助金额:
    $ 40.49万
  • 项目类别:
Statistical Strategies for Establishing Etiologic Heterogeneity of Tumors
建立肿瘤病因异质性的统计策略
  • 批准号:
    8509633
  • 财政年份:
    2012
  • 资助金额:
    $ 40.49万
  • 项目类别:
Statistical Strategies for Establishing Etiologic Heterogeneity of Tumors
建立肿瘤病因异质性的统计策略
  • 批准号:
    8677807
  • 财政年份:
    2012
  • 资助金额:
    $ 40.49万
  • 项目类别:

相似国自然基金

多模态超声VisTran-Attention网络评估早期子宫颈癌保留生育功能手术可行性
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
Ultrasomics-Attention孪生网络早期精准评估肝内胆管癌免疫治疗的研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目

相似海外基金

Development of social attention indicators of emerging technologies and science policies with network analysis and text mining
利用网络分析和文本挖掘开发新兴技术和科学政策的社会关注指标
  • 批准号:
    24K16438
  • 财政年份:
    2024
  • 资助金额:
    $ 40.49万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Improving Flexible Attention to Numerical and Spatial Magnitudes in Young Children
提高幼儿对数字和空间大小的灵活注意力
  • 批准号:
    2410889
  • 财政年份:
    2024
  • 资助金额:
    $ 40.49万
  • 项目类别:
    Continuing Grant
The Information-Attention Tradeoff: Toward an Understanding of the Fundamentals of Online Attention
信息与注意力的权衡:了解在线注意力的基本原理
  • 批准号:
    2343858
  • 财政年份:
    2024
  • 资助金额:
    $ 40.49万
  • 项目类别:
    Continuing Grant
The everyday learning opportunities of young children with attention and motor difficulties: From understanding constraints to reshaping intervention
注意力和运动困难幼儿的日常学习机会:从理解限制到重塑干预
  • 批准号:
    MR/X032922/1
  • 财政年份:
    2024
  • 资助金额:
    $ 40.49万
  • 项目类别:
    Fellowship
Towards a cognitive process model of how attention and choice interact
建立注意力和选择如何相互作用的认知过程模型
  • 批准号:
    DP240102605
  • 财政年份:
    2024
  • 资助金额:
    $ 40.49万
  • 项目类别:
    Discovery Projects
DDRIG in DRMS: Communicating risks in a sensational media environment-Using short video multimodal features to attract attention and reduce psychological reactance for persuasion
DRMS中的DDRIG:耸人听闻的媒体环境中沟通风险——利用短视频多模态特征吸引注意力,减少说服心理抵触
  • 批准号:
    2343506
  • 财政年份:
    2024
  • 资助金额:
    $ 40.49万
  • 项目类别:
    Standard Grant
Assessing the Influence of Reading Fiction on Multiple Tests of Attention
评估阅读小说对注意力多重测试的影响
  • 批准号:
    24K16033
  • 财政年份:
    2024
  • 资助金额:
    $ 40.49万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Attention機構に基づく異種集合マッチング方式の分析と新方式の提案
基于注意力机制的异构集合匹配方法分析及新方法的提出
  • 批准号:
    23K11218
  • 财政年份:
    2023
  • 资助金额:
    $ 40.49万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Effects of instruction using focus of attention on performance of chest compressions.
使用注意力集中的教学对胸外按压表现的影响。
  • 批准号:
    23K09887
  • 财政年份:
    2023
  • 资助金额:
    $ 40.49万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Assessing the Influence of SDGs Formulation on Managers' Perceptions and CSR Activities: An Attention-based View
评估可持续发展目标制定对管理者认知和企业社会责任活动的影响:基于注意力的观点
  • 批准号:
    23K01515
  • 财政年份:
    2023
  • 资助金额:
    $ 40.49万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了