Methods and Tools for Integrating Pathomics Data into Cancer Registries
将病理组学数据整合到癌症登记处的方法和工具
基本信息
- 批准号:10216066
- 负责人:
- 金额:$ 64.33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-04-01 至 2023-03-31
- 项目状态:已结题
- 来源:
- 关键词:Advanced DevelopmentAlgorithmic SoftwareAlgorithmsAnatomyAreaAutomobile DrivingBiological AssayBiological MarkersCell NucleusClassificationClinicalClinical DataCohort StudiesCollaborationsCommunitiesCuesDataData SetDevelopmentDiagnosticDiseaseDisease ProgressionEnsureEnvironmentEvaluation StudiesExhibitsEyeGoalsHistopathologyHumanImageImaging DeviceInformaticsInfrastructureIntraobserver VariabilityInvestigationKentuckyLinkLymphomaMachine LearningMalignant NeoplasmsMalignant neoplasm of prostateMapsMethodologyMethodsModernizationMorphologyNew JerseyNon-Small-Cell Lung CarcinomaNuclearOutcomePathologyPathology ReportPatientsPerceptionPhasePhenotypePopulationProcessRegistriesReproducibilityResearchResearch PersonnelResolutionRetrievalScienceScientific EvaluationSiteSlideSpecimenTestingTextureTissuesTranscendTumor SubtypeTumor-Infiltrating LymphocytesUniversitiesValidationVisualVisualizationWorkanalytical toolbasecohortcomputer infrastructurecomputing resourcesdata managementdata registrydigital pathologyepidemiology studyfeature extractionimage archival systemimage visualizationimprovedinformatics infrastructureinterestneoplasm registrypathology imagingpatient populationpatient stratificationpopulation basedprecision medicineprognosticprototyperepositoryresponsescale upstemtherapeutic effectivenesstooltumortumor registryvalidation studieswhole slide imaging
项目摘要
The goal of this project is to enrich SEER registry data with high-quality population-based
biospecimen data in the form of digital pathology, machine learning based classifications and
quantitative pathomics feature sets. We will create a well-curated repository of high-quality
digitized pathology images for subjects whose data is being collected by the registries. These
images will be processed to extract computational features and establish deep linkages with
registry data, thus enabling the creation of information-rich, population cohorts containing
objective imaging and clinical attributes. Specific examples of digital Pathology derived feature
sets include quantification of tumor infiltrating lymphocytes and segmentation and
characterization of cancer or stromal nuclei. Features will also include spectral and spatial
signatures of the underlying pathology. The scientific premise for this approach stems from
increasing evidence that information extracted from digitized pathology images
(pathomic features) are a quantitative surrogate of what is described in a pathology report. The
important distinction being that these features are quantitative and reproducible, unlike human
observations that are highly qualitative and subject to a high degree of inter- and intra-observer
variability. This dataset will provide, a unique, population-wide tissue based view of cancer,
and dramatically accelerate our understanding of the stages of disease progression, cancer
outcomes, and predict and assess therapeutic effectiveness.
This work will be carried out in collaboration with three SEER registries. We will partner
with The New Jersey State Cancer Registry during the development phase of the project (UG3).
During the validation phase of the project (UH3), the Georgia and Kentucky State Cancer
Registries will join the project. The infrastructure will be developed in close collaboration with
SEER registries to ensure consistency with registry processes, scalability and ability support
creation of population cohorts that span multiple registries. We will deploy visual analytic tools
to facilitate the creation of population cohorts for epidemiological studies, tools to support
visualization of feature clusters and related whole-slide images while providing advanced
algorithms for conducting content based image retrieval. The scientific validation of the
proposed environment will be undertaken through three studies in Prostate Cancer, Lymphoma
and NSCLC, led by investigators at the three sites.
该项目的目标是用高质量的基于人群的
数字病理学形式的生物标本数据,基于机器学习的分类,
定量病理组学特征集。我们将创建一个精心策划的高质量
数据由登记处收集的受试者的数字化病理学图像。这些
将对图像进行处理,以提取计算特征,并与
登记数据,从而能够建立信息丰富的人口群组,
客观成像和临床属性。数字病理学衍生特征的具体示例
集合包括肿瘤浸润淋巴细胞的定量和分割,
特征还将包括光谱和空间
这种方法的科学前提源于
越来越多的证据表明,从数字化病理图像中提取的信息
(病理学特征)是病理学报告中描述的内容的定量替代。
重要的区别在于这些特征是定量的和可再现的,不像人类
高质量的观察,并受到观察者之间和观察者内部的高度
变异性。该数据集将提供一个独特的,基于人群组织的癌症视图,
大大加速了我们对疾病发展阶段的理解,癌症
结果,并预测和评估治疗效果。
这项工作将与三个SEER登记处合作进行。
在项目开发阶段(UG3),与新泽西州癌症登记处合作。
在项目(UH3)的验证阶段,格鲁吉亚州和肯塔基州州癌症研究所
登记册将加入该项目。
SEER注册表确保与注册表流程的一致性、可扩展性和能力支持
创建跨越多个注册中心的人群队列。我们将部署可视化分析工具,
为便于建立流行病学研究的人口群组,
可视化的功能集群和相关的整个幻灯片图像,同时提供先进的
进行基于内容的图像检索的算法。
拟议的环境将通过三项研究,在前列腺癌,淋巴瘤,
和NSCLC,由三个研究中心的研究者领导。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eric B. Durbin其他文献
Eric B. Durbin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eric B. Durbin', 18)}}的其他基金
Natural Language Processing Platform for Cancer Surveillance
用于癌症监测的自然语言处理平台
- 批准号:
10451798 - 财政年份:2019
- 资助金额:
$ 64.33万 - 项目类别:
Natural Language Processing Platform for Cancer Surveillance
用于癌症监测的自然语言处理平台
- 批准号:
9980862 - 财政年份:2019
- 资助金额:
$ 64.33万 - 项目类别:
Natural Language Processing Platform for Cancer Surveillance
用于癌症监测的自然语言处理平台
- 批准号:
10589385 - 财政年份:2019
- 资助金额:
$ 64.33万 - 项目类别:
Natural Language Processing Platform for Cancer Surveillance
用于癌症监测的自然语言处理平台
- 批准号:
10441803 - 财政年份:2019
- 资助金额:
$ 64.33万 - 项目类别:
Natural Language Processing Platform for Cancer Surveillance
用于癌症监测的自然语言处理平台
- 批准号:
10656293 - 财政年份:2019
- 资助金额:
$ 64.33万 - 项目类别:
IGF::OT::IGF EXPANDING SEER TO INCLUDE MOLECULAR PROFILING IN NON-SMALL CELL LUNG CANCER (NSCLC)
IGF::OT::IGF 扩展 SEER 以包括非小细胞肺癌 (NSCLC) 的分子分析
- 批准号:
9161889 - 财政年份:2015
- 资助金额:
$ 64.33万 - 项目类别:
IGF::OT::IGF IMPROVE COMPLETENESS OF TREATMENT AND OTHER KEY DATA ELEMENTS BY LINKAGES WITH 15-MONTH RESUBMITTED DATA FROM COMMISSION ON CANCER HOSPITALS PERIOD OF PERFORMANCE: 09/18/2015 - 09/17/2016
IGF::OT::IGF 通过与癌症医院委员会重新提交的 15 个月数据的联系提高治疗和其他关键数据要素的完整性 执行期间:2015 年 9 月 18 日 - 2016 年 9 月 17 日
- 批准号:
9161894 - 财政年份:2015
- 资助金额:
$ 64.33万 - 项目类别:
ENHANCING CANCER REGISTRIES FOR EARLY CASE CAPTURE
加强癌症登记以实现早期病例捕获
- 批准号:
8886276 - 财政年份:2014
- 资助金额:
$ 64.33万 - 项目类别:
Cancer Research Informatics Shared Resource Facility
癌症研究信息学共享资源设施
- 批准号:
10204887 - 财政年份:2013
- 资助金额:
$ 64.33万 - 项目类别:
Cancer Research Informatics Shared Resource Facility
癌症研究信息学共享资源设施
- 批准号:
10470106 - 财政年份:2013
- 资助金额:
$ 64.33万 - 项目类别:
相似海外基金
Medcircuit, the algorithmic software reducing waiting times in emergency department and general practice waiting rooms.
MedCircuit,一种算法软件,可减少急诊科和全科候诊室的等待时间。
- 批准号:
133416 - 财政年份:2018
- 资助金额:
$ 64.33万 - 项目类别:
Feasibility Studies
SHF: Small: Programming Abstractions for Algorithmic Software Synthesis
SHF:小型:算法软件综合的编程抽象
- 批准号:
0916351 - 财政年份:2009
- 资助金额:
$ 64.33万 - 项目类别:
Standard Grant














{{item.name}}会员




