Natural Language Processing Platform for Cancer Surveillance
用于癌症监测的自然语言处理平台
基本信息
- 批准号:9980862
- 负责人:
- 金额:$ 41.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-19 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:Academic Medical CentersAddressAdoptedAdvanced DevelopmentAgreementArchitectureAreaAutomationAutomobile DrivingBiological MarkersBostonBreslow ThicknessCancer Research ProjectCancer Surveillance Research ProgramCharacteristicsClinicalCollaborationsColorectalCommunitiesComputer softwareComputerized Medical RecordConsultationsContractorDataData ElementData Management ResourcesData SourcesDecision MakingDevelopmentDiagnosisDivision of Cancer Control and Population SciencesDocumentationElementsEnvironmentExtensible Markup LanguageFamilyFeedsFoundationsFundingGene ProteinsGenomicsGoalsGrantHandednessHistologicHistologyHospitalsHumanIndividualInformation RetrievalKentuckyLinkLocationLouisianaLungMalignant NeoplasmsMalignant neoplasm of ovaryMapsMassachusettsMedicineMethodsModelingNatural Language ProcessingOncologyOntologyOutputOvarianPathologyPathology ReportPediatric HospitalsPerformancePhasePhenotypePositioning AttributeProcessProstateProviderRadiation therapyRadiology SpecialtyRegistriesReportingResearchSiteSolidSourceSpeedSupervisionSurveillance ProgramTerminologyTextTumor DebulkingUlcerUniversitiesValidationVisualizationWorkbasebiomedical ontologycalcificationcancer diagnosiscancer invasivenesscancer typeclinical encounterclinical phenotypecohortdata managementdata streamsdata visualizationdemographicsinformatics toolinnovationinteroperabilitymalignant breast neoplasmmedical schoolsmelanomaneoplasm registrynovelopen sourcepatient health informationphenotypic datapoint of careresponsesatisfactionsoftware developmentsuccesssymposiumtooltransmission processtreatment centertumor
项目摘要
PROJECT SUMMARY/ABSTRACT
This UG3/UH3 proposal titled “Natural Language Processing Platform for Cancer Surveillance” is in response
to Research Area 1 of PAR 16-349 (https://grants.nih.gov/grants/guide/pa-files/par-16-349.html) specifically
addressing the development of natural language processing (NLP) tools to facilitate
automatic/unsupervised/minimally supervised extraction of specific discrete cancer-related data from various
types of unstructured electronic medical records (EMRs) related to the activities of cancer registries. It is
submitted through a multi-PI mechanism – Prof. Guergana Savova from Boston Children’s Hospital/Harvard
Medical School, Dr. Jeremy Warner from Vanderbilt University Medical Center, Prof. Harry Hochheiser from
the University of Pittsburgh, and Prof. Eric Durbin from the Kentucky Cancer Registry/University of Kentucky.
The current proposal builds on prior work funded by the NCI Informatics Tools for Cancer Research (ITCR)
program (https://itcr.cancer.gov/ ). We envision building on our work to date to advance methods for
information extraction of clinical phenotyping data needed to fuel a new cancer surveillance paradigm that
would benefit hospital-based, state-based, and national cancer registries. In this new paradigm, surveillance
programs would use the methods to enhance the speed, accuracy, and ease of cancer reporting. The
proposed DeepPhe*CR platform could be deployed at local sites or centrally, and could eventually be
integrated into existing or new visualization and abstraction tools as needed by the cancer surveillance
community. Although there has been some previous work on automatic phenotype extraction from the various
streams of data including the clinical narrative for specific types of cancer or individual variables for cancer
surveillance, the proposed work will be a step towards a generalizable information extraction. This
generalizability enables extensibility and scalability. Interoperability is reinforced through the modeling part of
the proposed project which is grounded in most recent advances in biomedical ontologies, terminologies,
community-adopted conventions and standards. Our planned partnership with three SEER cancer registries
provides our decision-making processes with a solid foundation in large-scale cancer surveillance.
项目概要/摘要
这项名为“癌症监测自然语言处理平台”的 UG3/UH3 提案就是对此的回应
具体到 PAR 16-349 的研究领域 1 (https://grants.nih.gov/grants/guide/pa-files/par-16-349.html)
解决自然语言处理(NLP)工具的开发问题,以促进
自动/无监督/最低限度监督地从各种不同的数据中提取特定的离散癌症相关数据
与癌症登记处活动相关的非结构化电子病历 (EMR) 类型。这是
通过多 PI 机制提交 – 来自波士顿儿童医院/哈佛大学的 Guergana Savova 教授
医学院,范德堡大学医学中心 Jeremy Warner 博士,Harry Hochheiser 教授
匹兹堡大学和肯塔基州癌症登记处/肯塔基大学的 Eric Durbin 教授。
当前的提案建立在 NCI 癌症研究信息学工具 (ITCR) 资助的先前工作的基础上
计划 (https://itcr.cancer.gov/)。我们设想在迄今为止的工作基础上推进方法
临床表型数据的信息提取需要推动新的癌症监测范式
将使医院、州和国家癌症登记处受益。在这个新范式中,监视
项目将使用这些方法来提高癌症报告的速度、准确性和便利性。这
拟议的 DeepPhe*CR 平台可以部署在本地站点或集中部署,并且最终可以
根据癌症监测的需要集成到现有或新的可视化和抽象工具中
社区。尽管之前已经有一些关于从各种不同的表型中自动提取表型的工作
数据流,包括特定类型癌症的临床叙述或癌症的个体变量
监督,拟议的工作将是迈向普遍信息提取的一步。这
通用性实现了可扩展性和可伸缩性。通过建模部分增强了互操作性
拟议的项目以生物医学本体论、术语、
社区采用的公约和标准。我们计划与三个 SEER 癌症登记处建立合作伙伴关系
为我们的决策过程提供大规模癌症监测的坚实基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eric B. Durbin其他文献
Eric B. Durbin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eric B. Durbin', 18)}}的其他基金
Natural Language Processing Platform for Cancer Surveillance
用于癌症监测的自然语言处理平台
- 批准号:
10451798 - 财政年份:2019
- 资助金额:
$ 41.07万 - 项目类别:
Natural Language Processing Platform for Cancer Surveillance
用于癌症监测的自然语言处理平台
- 批准号:
10589385 - 财政年份:2019
- 资助金额:
$ 41.07万 - 项目类别:
Natural Language Processing Platform for Cancer Surveillance
用于癌症监测的自然语言处理平台
- 批准号:
10441803 - 财政年份:2019
- 资助金额:
$ 41.07万 - 项目类别:
Natural Language Processing Platform for Cancer Surveillance
用于癌症监测的自然语言处理平台
- 批准号:
10656293 - 财政年份:2019
- 资助金额:
$ 41.07万 - 项目类别:
Methods and Tools for Integrating Pathomics Data into Cancer Registries
将病理组学数据整合到癌症登记处的方法和工具
- 批准号:
10216066 - 财政年份:2018
- 资助金额:
$ 41.07万 - 项目类别:
IGF::OT::IGF EXPANDING SEER TO INCLUDE MOLECULAR PROFILING IN NON-SMALL CELL LUNG CANCER (NSCLC)
IGF::OT::IGF 扩展 SEER 以包括非小细胞肺癌 (NSCLC) 的分子分析
- 批准号:
9161889 - 财政年份:2015
- 资助金额:
$ 41.07万 - 项目类别:
IGF::OT::IGF IMPROVE COMPLETENESS OF TREATMENT AND OTHER KEY DATA ELEMENTS BY LINKAGES WITH 15-MONTH RESUBMITTED DATA FROM COMMISSION ON CANCER HOSPITALS PERIOD OF PERFORMANCE: 09/18/2015 - 09/17/2016
IGF::OT::IGF 通过与癌症医院委员会重新提交的 15 个月数据的联系提高治疗和其他关键数据要素的完整性 执行期间:2015 年 9 月 18 日 - 2016 年 9 月 17 日
- 批准号:
9161894 - 财政年份:2015
- 资助金额:
$ 41.07万 - 项目类别:
ENHANCING CANCER REGISTRIES FOR EARLY CASE CAPTURE
加强癌症登记以实现早期病例捕获
- 批准号:
8886276 - 财政年份:2014
- 资助金额:
$ 41.07万 - 项目类别:
Cancer Research Informatics Shared Resource Facility
癌症研究信息学共享资源设施
- 批准号:
10204887 - 财政年份:2013
- 资助金额:
$ 41.07万 - 项目类别:
Cancer Research Informatics Shared Resource Facility
癌症研究信息学共享资源设施
- 批准号:
10470106 - 财政年份:2013
- 资助金额:
$ 41.07万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 41.07万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 41.07万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 41.07万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 41.07万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 41.07万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 41.07万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 41.07万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 41.07万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 41.07万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 41.07万 - 项目类别:
Research Grant














{{item.name}}会员




