3D Printing bone graft containing controlled-release growth factors and cytokines
含有控释生长因子和细胞因子的 3D 打印骨移植物
基本信息
- 批准号:10275493
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-12-01 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:3-Dimensional3D PrintAfghanistanAllograftingAnimal ModelAreaAutologousAutologous TransplantationBMP2 geneBone RegenerationBone TransplantationCalciumCell Differentiation processCell MobilityCellsCleft PalateClinicalComplexComputer ModelsComputer softwareComputer-Aided DesignCost SavingsCustomDataDefectDentalEngineeringEventEvolutionFaceFailureFollow-Up StudiesFractureFreedomGenerationsGeometryGoalsGrowth FactorHumanHydrogelsHydroxyapatitesImplantIn VitroInjuryIraqJointsKineticsLaboratoriesLeadLeftMalignant NeoplasmsMandibleMaxillaMethodsMicrospheresModelingModificationMovementNatureNeck InjuriesOperating RoomsOperative Surgical ProceduresOralOral mucous membrane structureOutcomePaste substancePatientsPrintingProceduresProcessRegistriesRehabilitation therapyReportingResearchSeriesSiteSourceStromal Cell-Derived Factor 1Supporting CellSurgeonSystemTechnologyTestingThickThree Dimensional Medical ImagingThree-Dimensional ImageThree-Dimensional ImagingTimeTissue EngineeringTissue ExpandersTooth ExtractionTranslationsTraumaVascular Endothelial Growth Factorsalveolar cleftbasebiomaterial compatibilitybioprintingbonebone cellbone engineeringbone imagingbone scaffoldcancer therapycombat injurycombat woundcomputer programcone-beam computed tomographycontrolled releasecostcytokinedesigndisease transmissionimprovedin vitro Modelin vitro testingin vivoinnovationmaxillofacialoperationreconstructionrecruitrelease factorrepairedscaffoldskeletalstandard of caresuccesstripolyphosphatevirtualwounded service member
项目摘要
Objectives
As a promising alternative to the traditional surgical repair of large maxillary and mandibular defects with
allograft and autologous bone, we propose non-vital, 3D printed bone grafts that rely on the endogenous cells
of the recipient patient. Commonly used for osseous defects, allograft has a limited capacity for in vivo
colonization with bone cells, especially for large osseous defects. This study proposes to develop and test in
vitro osteoinductive porous grafts, pre-designed to fit the patients-specific defects, and custom manufactured
specifically to the patient to be grafted, by 3D bioprinting with specific controlled-release of selected growth
factors and cytokines.
Methods
To this goal, Richard L. Roudebush VAMC offers expertise in clinical 3D imaging and computer-assisted
design, combined with the state-of-the-art technology available in newly created 3DTissue Bioprinting Core
laboratory, equipped with a regenHU 3DDiscovery ‘Evolution’ bioprinter.
The first Specific Aim will be the generation of such constructs by creating models of patient-specific maxillary
and mandibular bone defects and then of their precisely fitting grafts, using the software on our bioprinter.
These models will be plotted using as structural component a calcium triphosphate/hydroxyapatite scaffold,
and as bioactive component a hydrogel containing growth factors-releasing microbeads.
The second Specific Aim will be the in vitro testing of this construct’s bioactivity, by assessing the kinetics of
growth factors release and by determining its ability to induce cell recruitment and differentiation.
If successful, this project will stand by itself by generation of an improved technology for rapid, personalized
and biocompatible tissue engineering of bone implants, with applicability to maxillofacial, cleft palate and
many other instances of skeletal repair throughout the body – all are common with reconstruction of combat
injuries and defects from cancer treatments.
Follow-Up Study (not this study)
This project contains several innovative approaches: a dual paste-hydrogel printing, addition of growth factors
in microbeads within the hydrogel, testing intra-construct cell mobility and differentiation -- all will need to be
first optimized before beginning the next study that will explore an elaborate systematic method of finding the
best combination of growth factors, cytokines, and scaffolding for bone grafts. This will rapidly and much more
efficiently lead to large animal models for an eventual rapid and easier translation to clinical use
目标
作为一种有希望的替代传统手术修复巨大的上颌骨和下颌骨缺损
同种异体骨和自体骨,我们提出了依赖内源性细胞的无生命3D打印骨移植。
接受治疗的病人。同种异体骨移植通常用于骨缺损,但体内移植的能力有限。
有骨细胞的定植,尤指大的骨缺陷。这项研究建议开发和测试
体外骨诱导多孔移植物,预先设计以适应患者特定的缺陷,并定制制造
通过3D生物打印和选定生长的特定受控释放,专门针对要移植的患者
因子和细胞因子。
方法
为了实现这一目标,理查德·L·鲁德布什VAMC提供临床3D成像和计算机辅助方面的专业知识
设计,结合最新创建的3DTIssue Biopprint Core中可用的最先进技术
实验室,配备了一台regenHU 3D发现‘进化’生物打印机。
第一个具体目标将是通过创建针对患者的上颌骨模型来生成这样的结构
和下颌骨缺损,然后是他们的精确匹配的移植物,使用我们的生物打印机上的软件。
这些模型将使用三磷酸钙/羟基磷灰石支架作为结构组件绘制,
作为生物活性成分的水凝胶含有生长因子释放微球。
第二个具体目标将是体外测试这种结构的生物活性,通过评估动力学
生长因子的释放和决定其诱导细胞募集和分化的能力。
如果成功,这个项目将独立于一代快速、个性化的改进技术
和生物相容的骨组织工程,适用于颌面部、腭裂和
全身骨骼修复的许多其他例子--所有这些都是战斗重建中常见的
癌症治疗带来的伤害和缺陷。
随访研究(不是本研究)
该项目包含了几种创新的方法:双糊剂-水凝胶打印,添加生长因子
在水凝胶内的微珠中,测试结构内细胞的流动性和分化--所有这些都需要
在开始下一项研究之前首先进行优化,下一项研究将探索一种精细的系统方法来找到
生长因子、细胞因子和骨移植支架的最佳组合。这将迅速并远远超过
高效地建立大型动物模型,最终快速且更容易地转化为临床使用
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Clark T. Barco其他文献
Clark T. Barco的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Clark T. Barco', 18)}}的其他基金
3D Printing bone graft containing controlled-release growth factors and cytokines
含有控释生长因子和细胞因子的 3D 打印骨移植物
- 批准号:
10731348 - 财政年份:2020
- 资助金额:
-- - 项目类别:
相似海外基金
Study on the use of 3D print models to improve understanding of geomorphic processes
研究使用 3D 打印模型来提高对地貌过程的理解
- 批准号:
22K13777 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
3D print-on-demand technology for personalised medicines at the point of care
用于护理点个性化药物的 3D 按需打印技术
- 批准号:
10045111 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant for R&D
Regenerative cooling optimisation in 3D-print rocket nozzles
3D 打印火箭喷嘴的再生冷却优化
- 批准号:
2749141 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Studentship
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2021
- 资助金额:
-- - 项目类别:
College - University Idea to Innovation Grants
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2020
- 资助金额:
-- - 项目类别:
College - University Idea to Innovation Grants
Administrative Supplement for Equipment: 6-axis Positioner to Improve 3D Print Quality and Print Size
设备管理补充:用于提高 3D 打印质量和打印尺寸的 6 轴定位器
- 批准号:
10801667 - 财政年份:2019
- 资助金额:
-- - 项目类别:
SBIR Phase II: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第二阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1738138 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Standard Grant
Development of "artificial muscle' ink for 3D print of microrobots
开发用于微型机器人3D打印的“人造肌肉”墨水
- 批准号:
17K18852 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
I-Corps: Nanochon, a Commercial Venture to 3D Print Regenerative Implants for Joint Reconstruction
I-Corps:Nanochon,一家商业企业,致力于 3D 打印再生植入物进行关节重建
- 批准号:
1612567 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Standard Grant
SBIR Phase I: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第一阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1621732 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Standard Grant