SCH: INT: Smart and Connected Health for Newborn Ventilation
SCH:INT:新生儿通气的智能互联健康
基本信息
- 批准号:10261498
- 负责人:
- 金额:$ 25.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-30 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:AdultAlgorithmsAmericasAreaBreathingBronchopulmonary DysplasiaClinicalCustomDataDecision MakingEnvironmentEquilibriumFeedbackFemaleHealthHealth Insurance Portability and Accountability ActHealth PersonnelHealth ServicesHospitalsHumanIncubatorsInfrastructureInstitutesInstructionIntelligenceIntermittent Positive-Pressure VentilationLaboratoriesLifeManikinsMechanical ventilationMedicalNeonatalNewborn InfantNoseOutcomeOutreach ResearchPremature InfantProcessReadinessRecommendationRiskSMART healthSavingsSociologyStressStudentsSurvival RateSystemTechniquesTechnologyTextilesTimeTranslatingTubeUnderrepresented MinorityUniversitiesVentilatorVentilator-induced lung injuryWorkbasecommercial applicationcommercializationconnected careconnected healthcostdesignendotrachealfeature extractionfield studyimprovedinfant monitoringinnovationiterative designlung injuryminority studentneonatal healthnew technologynon-invasive monitornovelpreterm newbornprogramsprototyperecruitsensorundergraduate studentventilationwearable sensor technology
项目摘要
Placing an endotracheal tube {ETT) to provide mechanical ventilation for a newborn is life-saving but
comes with the potential to create many short- and long-term complications. As the survival rate in
preterm infants rises, it is increasingly recognized that endotracheal invasive mechanical ventilation is
associated with an increased risk of developing the most common chronic lung disease in infants,
bronchopulmonary dysplasia (BPD). Management of BPD takes a considerable toll on health services,
and BPD can have health ramifications reaching into adulthood. To decrease BPD, the use of noninvasive
ventilation techniques in preterm infants is recognized as the most effective strategy. While there are
multiple modes of noninvasive ventilation support that have been utilized in an attempt to decrease BPD,
the most common one is nasal intermittent positive pressure ventilation (NIPPV), which is essentially a
mode of providing intermittent mandatory ventilation (IMV) using nasal prongs. Prior studies done with
NIPPV have suggested short-term benefits, especially with the use of synchronization (SNIPPV).
Our objective in this proposal is to develop a smart and connected health solution to unobtrusively and
non-invasively monitor newborns. A key outcome of this proposal is the design of a control loop to
intelligently synchronize newborn breathing with an external ventilator to provide invasive as well as
non-invasive ventilation, such as SNIPPV. While flow sensors in the ETT can provide effective
synchronization, they significantly increase the size, form-factor, and hence, the cost of the ETT. Instead,
this proposal will use our fabric-based sensors, which will enhance non-invasive ventilatory assistance
and decrease lung injury/BP.
RELEVANCE (See instructions):
Use of synchronized nasal (noninvasive) intermittent positive pressure ventilation (SNIPPV) has shown
promise to decrease invasive ventilation-induced lung injury to premature newborns. The only currently
available ventilator/technique (Servo-i/NAVA) in the USA to do so has not shown improved long-term
clinical outcomes. Our proposal is to develop a novel system to provide SNIPPV that intelligently
synchronizes newborn breathing with an external ventilator with our unique fabric-based breathing
D
放置气管内插管(ETT)为新生儿提供机械通气是挽救生命的
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kapil Dandekar其他文献
Kapil Dandekar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kapil Dandekar', 18)}}的其他基金
SCH: INT: Smart and Connected Health for Newborn Ventilation
SCH:INT:新生儿通气的智能互联健康
- 批准号:
10021660 - 财政年份:2019
- 资助金额:
$ 25.83万 - 项目类别:
CPS: Sensing Processing and Action of Biomedical Smart Textiles
CPS:生物医学智能纺织品的传感处理和作用
- 批准号:
9469503 - 财政年份:2016
- 资助金额:
$ 25.83万 - 项目类别:
CPS: Sensing Processing and Action of Biomedical Smart Textiles
CPS:生物医学智能纺织品的传感处理和作用
- 批准号:
9272892 - 财政年份:2016
- 资助金额:
$ 25.83万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 25.83万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 25.83万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 25.83万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 25.83万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 25.83万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 25.83万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 25.83万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 25.83万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 25.83万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 25.83万 - 项目类别:
Research Grant