SCH: INT: Smart and Connected Health for Newborn Ventilation

SCH:INT:新生儿通气的智能互联健康

基本信息

  • 批准号:
    10021660
  • 负责人:
  • 金额:
    $ 26.4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-30 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

Placing an endotracheal tube {ETT) to provide mechanical ventilation for a newborn is life-saving but comes with the potential to create many short- and long-term complications. As the survival rate in preterm infants rises, it is increasingly recognized that endotracheal invasive mechanical ventilation is associated with an increased risk of developing the most common chronic lung disease in infants, bronchopulmonary dysplasia (BPD). Management of BPD takes a considerable toll on health services, and BPD can have health ramifications reaching into adulthood. To decrease BPD, the use of noninvasive ventilation techniques in preterm infants is recognized as the most effective strategy. While there are multiple modes of noninvasive ventilation support that have been utilized in an attempt to decrease BPD, the most common one is nasal intermittent positive pressure ventilation (NIPPV), which is essentially a mode of providing intermittent mandatory ventilation (IMV) using nasal prongs. Prior studies done with NIPPV have suggested short-term benefits, especially with the use of synchronization (SNIPPV). Our objective in this proposal is to develop a smart and connected health solution to unobtrusively and non-invasively monitor newborns. A key outcome of this proposal is the design of a control loop to intelligently synchronize newborn breathing with an external ventilator to provide invasive as well as non-invasive ventilation, such as SNIPPV. While flow sensors in the ETT can provide effective synchronization, they significantly increase the size, form-factor, and hence, the cost of the ETT. Instead, this proposal will use our fabric-based sensors, which will enhance non-invasive ventilatory assistance and decrease lung injury/BP. RELEVANCE (See instructions): Use of synchronized nasal (noninvasive) intermittent positive pressure ventilation (SNIPPV) has shown promise to decrease invasive ventilation-induced lung injury to premature newborns. The only currently available ventilator/technique (Servo-i/NAVA) in the USA to do so has not shown improved long-term clinical outcomes. Our proposal is to develop a novel system to provide SNIPPV that intelligently synchronizes newborn breathing with an external ventilator with our unique fabric-based breathing D
放置气管内导管(ETT)为新生儿提供机械通气可以挽救生命, 有可能造成许多短期和长期的并发症。因为在美国, 随着早产儿的增加,越来越多的人认识到气管内有创机械通气是一种有效的方法。 与婴儿中最常见的慢性肺病的风险增加有关, 支气管肺发育不良(BPD)。BPD的管理对卫生服务造成了相当大的损失, BPD会对成年人的健康产生影响。为了减少BPD,使用非侵入性 早产儿的通气技术被认为是最有效的策略。虽然有 已经利用多种模式的无创通气支持来尝试降低BPD, 最常见的一种是鼻间歇正压通气(NIPPV),它本质上是一种 使用鼻叉提供间歇性指令通气(IMV)的模式。既往研究 NIPPV已经提出了短期的好处,特别是使用同步(SNIPPV)。 我们在此提案中的目标是开发一种智能和互联的健康解决方案, 非侵入性地监测新生儿。该提案的一个关键成果是设计了一个控制回路, 智能地使新生儿呼吸与外部呼吸机同步, 无创通气,如SNIPPV。虽然ETT中的流量传感器可以提供有效的 然而,由于没有同步,它们显著地增加了ETT的尺寸、形状因子,并且因此增加了ETT的成本。相反地, 该方案将使用我们的织物传感器,这将增强非侵入性的诊断援助 降低肺损伤/血压。 相关性(参见说明): 同步鼻(无创)间歇正压通气(SNIPPV)的使用表明, 有望减少早产儿有创通气引起的肺损伤。目前唯一 美国现有的呼吸机/技术(Servo-i/纳瓦)并未显示出长期改善 临床结果。我们的建议是开发一种新的系统,提供SNIPPV,智能 通过我们独特的织物呼吸,使用外部呼吸机帮助新生儿呼吸 D

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kapil Dandekar其他文献

Kapil Dandekar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kapil Dandekar', 18)}}的其他基金

SCH: INT: Smart and Connected Health for Newborn Ventilation
SCH:INT:新生儿通气的智能互联健康
  • 批准号:
    10261498
  • 财政年份:
    2019
  • 资助金额:
    $ 26.4万
  • 项目类别:
CPS: Sensing Processing and Action of Biomedical Smart Textiles
CPS:生物医学智能纺织品的传感处理和作用
  • 批准号:
    9469503
  • 财政年份:
    2016
  • 资助金额:
    $ 26.4万
  • 项目类别:
CPS: Sensing Processing and Action of Biomedical Smart Textiles
CPS:生物医学智能纺织品的传感处理和作用
  • 批准号:
    9272892
  • 财政年份:
    2016
  • 资助金额:
    $ 26.4万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 26.4万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 26.4万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 26.4万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 26.4万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 26.4万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 26.4万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 26.4万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 26.4万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 26.4万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 26.4万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了