MR Fingerprinting and Computerized Decision Support for Prostate Cancer
前列腺癌的 MR 指纹识别和计算机化决策支持
基本信息
- 批准号:10219975
- 负责人:
- 金额:$ 58.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-03-02 至 2024-02-29
- 项目状态:已结题
- 来源:
- 关键词:Algorithmic AnalysisAlgorithmsBenignBiopsyCancer PatientClinicalComplementDataDetectionDevelopmentDiagnosisDiffusionDiscriminationDiseaseEvaluationExclusionFailureFingerprintGoalsHeterogeneityImageImage AnalysisImaging TechniquesImaging technologyIndolentLearningLesionLiteratureMagnetic ResonanceMagnetic Resonance ImagingMalignant NeoplasmsMalignant neoplasm of prostateMapsMeasurementMonitorMorphologyNeoplasmsOperative Surgical ProceduresOrganOutcomePalpablePatientsPatternPerformancePeriodicityPeripheralProbabilityPropertyProstateProstate-Specific AntigenProtocols documentationPublishingRiskScanningSiteSliceStressTechnologyTestingTextureTissuesTreatment ProtocolsValidationVariantVisualWorkaggressive therapybaseblindcancer heterogeneitycohortcomputerizedcostdisorder riskimprovedinnovationmenpatient subsetsprospectiveprostate biopsyprostatitisradiomicssupport toolstooltumor
项目摘要
PROJECT SUMMARY
The prostate remains the only organ in which blind untargeted biopsies are conducted without a pre-identified
suspected focus of neoplasm. Men with palpable abnormalities or elevated prostate specific antigen must
endure trans-rectal biopsy with related costs, discomfort, stress, and complications, because it is not
impossible to objectively and reliably identify who does not require a biopsy. Well over 500,000 men in the US
with no evidence of prostate cancer still undergo prostate biopsies, solely on account of PSA, a grade D test
according to the USPTF. Consequently there is clearly an unmet need to develop both better imaging
techniques and image analysis algorithms that can enable improved non-invasive characterization of prostate
cancer and distinguish low grade indolent cancers from the more aggressive intermediate to high grade
variants. This would help channel and monitor appropriate patients in less aggressive treatment protocols such
as active surveillance.
Currently MRI is excellent for detecting high grade prostate cancer (PCa), but is less accurate for low and
intermediate grade disease. Definitive exclusion of disease, and thus the need for biopsy in a subset of
patients, is not possible. Also, patients who opt for active surveillance cannot be followed by imaging alone and
require repeated periodic biopsy. Magnetic resonance fingerprinting (MRF) is a framework pioneered by our
team for simultaneously quantifying multiple tissue properties with MRI, and has been used to quantify T1 and
T2 more efficiently, accurately, and precisely than previously possible. Extensive preliminary data show the
utility of this technology in combination with apparent diffusion coefficient (ADC) mapping, to separate normal
peripheral zone from potential cancer. In parallel our team has been developing and validating computerized
decision support (CDS) tools which can diagnose, grade, and characterize PCa both in the peripheral and
transitional zones on MRI. We propose to develop an MRF exam for prostate cancer that allows
simultaneous mapping of T1, T2, and ADC for efficient and quantitative separation of PCa from normal
prostate and to separate low risk and more aggressive disease. We will also develop integrated CDS
tools to identify additional image derived features (radiomics) from the MRF derived maps to
complement MRF measurements for more accurate detection and grading of PCa both in the peripheral
and transitional zones. The accuracy of this combined MRF+CDS exam will be prospectively validated in a
cohort of 250 men scanned prior to biopsy.
项目摘要
前列腺仍然是唯一的器官,其中盲非靶向活检进行没有预先确定的
疑似肿瘤病灶。可触及异常或前列腺特异性抗原升高的男性必须
忍受经直肠活检的相关费用,不适,压力和并发症,因为它不是
不可能客观可靠地确定谁不需要活检。美国有超过50万人
没有前列腺癌的证据仍然接受前列腺活检,仅仅是因为PSA,一个D级测试
根据USPTF。因此,显然存在未满足的需求,即开发更好的成像技术,
可以改进前列腺非侵入性表征的技术和图像分析算法
癌症和区分低级别惰性癌症从更具侵略性的中级到高级
变体。这将有助于引导和监测适当的患者在不太积极的治疗方案,
主动监视
目前,MRI对于检测高级别前列腺癌(PCa)是极好的,但是对于低级别和高级别前列腺癌(PCa)是不太准确的。
中度疾病。排除疾病,因此需要在一个子集的活检,
病人是不可能的。此外,选择主动监测的患者不能仅通过成像进行随访,
需要反复定期活检。磁共振指纹识别(MRF)是由我们的团队开创的一个框架。
团队同时量化多种组织特性与MRI,并已被用于量化T1和
T2比以前更有效、更准确、更精确。大量的初步数据显示,
该技术与表观扩散系数(ADC)标测相结合的实用性,
周围区域的潜在癌症。同时,我们的团队一直在开发和验证计算机化的
决策支持(CDS)工具,可以诊断、分级和表征外周和外周的PCa
移行区的影像我们建议开发一种前列腺癌的MRF检查,
同时绘制T1、T2和ADC图,用于有效和定量分离PCa与正常人
前列腺和分离低风险和更具侵略性的疾病。我们还将开发综合CDS
从MRF衍生图中识别其他图像衍生特征(放射组学)的工具,
补充MRF测量,以便更准确地检测和分级外周和外周中的PCa
和过渡区。这种MRF+CDS联合检查的准确性将在
活检前扫描的250名男性队列。
项目成果
期刊论文数量(21)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(40)
Computer-Aided Laser Dissection: A Microdissection Workflow Leveraging Image Analysis Tools.
- DOI:10.4103/jpi.jpi_60_18
- 发表时间:2018-01-01
- 期刊:
- 影响因子:0
- 作者:Hipp, Jason D;Johann, Donald J;Tangrea, Michael A
- 通讯作者:Tangrea, Michael A
Accurate and reproducible invasive breast cancer detection in whole-slide images: A Deep Learning approach for quantifying tumor extent.
- DOI:10.1038/srep46450
- 发表时间:2017-04-18
- 期刊:
- 影响因子:4.6
- 作者:Cruz-Roa A;Gilmore H;Basavanhally A;Feldman M;Ganesan S;Shih NNC;Tomaszewski J;González FA;Madabhushi A
- 通讯作者:Madabhushi A
CT radiomic signature predicts survival and chemotherapy benefit in stage I and II HPV-associated oropharyngeal carcinoma.
- DOI:10.1038/s41698-023-00404-w
- 发表时间:2023-06-02
- 期刊:
- 影响因子:7.9
- 作者:
- 通讯作者:
Intratumoral and peritumoral radiomics for the pretreatment prediction of pathological complete response to neoadjuvant chemotherapy based on breast DCE-MRI.
- DOI:10.1186/s13058-017-0846-1
- 发表时间:2017-05-18
- 期刊:
- 影响因子:0
- 作者:Braman NM;Etesami M;Prasanna P;Dubchuk C;Gilmore H;Tiwari P;Plecha D;Madabhushi A
- 通讯作者:Madabhushi A
High-throughput adaptive sampling for whole-slide histopathology image analysis (HASHI) via convolutional neural networks: Application to invasive breast cancer detection.
- DOI:10.1371/journal.pone.0196828
- 发表时间:2018
- 期刊:
- 影响因子:3.7
- 作者:Cruz-Roa A;Gilmore H;Basavanhally A;Feldman M;Ganesan S;Shih N;Tomaszewski J;Madabhushi A;González F
- 通讯作者:González F
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vikas Gulani其他文献
Vikas Gulani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vikas Gulani', 18)}}的其他基金
MR Fingerprinting and Computerized Decision Support for Prostate Cancer
前列腺癌的 MR 指纹识别和计算机化决策支持
- 批准号:
10090051 - 财政年份:2017
- 资助金额:
$ 58.17万 - 项目类别:
Comprehensive quantitative ultrafast 3D liver MRI
综合定量超快 3D 肝脏 MRI
- 批准号:
8704436 - 财政年份:2013
- 资助金额:
$ 58.17万 - 项目类别:
Comprehensive quantitative ultrafast 3D liver MRI
综合定量超快 3D 肝脏 MRI
- 批准号:
8579414 - 财政年份:2013
- 资助金额:
$ 58.17万 - 项目类别:
Comprehensive quantitative ultrafast 3D liver MRI
综合定量超快 3D 肝脏 MRI
- 批准号:
8905601 - 财政年份:2013
- 资助金额:
$ 58.17万 - 项目类别:
BRAIN FUNCTION IMAGING USING DIFFUSION WEIGHTED MRI
使用扩散加权 MRI 进行脑功能成像
- 批准号:
2883347 - 财政年份:1999
- 资助金额:
$ 58.17万 - 项目类别:
BRAIN FUNCTION IMAGING USING DIFFUSION WEIGHTED MRI
使用扩散加权 MRI 进行脑功能成像
- 批准号:
2668812 - 财政年份:1998
- 资助金额:
$ 58.17万 - 项目类别:
BRAIN FUNCTION IMAGING USING DIFFUSION WEIGHTED MRI
使用扩散加权 MRI 进行脑功能成像
- 批准号:
2379149 - 财政年份:1997
- 资助金额:
$ 58.17万 - 项目类别:
BRAIN FUNCTION IMAGING USING DIFFUSION WEIGHTED MRI
使用扩散加权 MRI 进行脑功能成像
- 批准号:
2242527 - 财政年份:1996
- 资助金额:
$ 58.17万 - 项目类别:
BRAIN FUNCTION IMAGING USING DIFFUSION WEIGHTED MRI
使用扩散加权 MRI 进行脑功能成像
- 批准号:
2242526 - 财政年份:1995
- 资助金额:
$ 58.17万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 58.17万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 58.17万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 58.17万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 58.17万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 58.17万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 58.17万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 58.17万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 58.17万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 58.17万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 58.17万 - 项目类别:
Continuing Grant