Automated Physiological Assessment of Chronic Pain in Daily Life

日常生活中慢性疼痛的自动生理评估

基本信息

  • 批准号:
    10219003
  • 负责人:
  • 金额:
    $ 23.03万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-03-09 至 2023-02-28
  • 项目状态:
    已结题

项目摘要

The United States is in the midst of dual epidemics of chronic pain and opioid abuse, with approx. 20% of the population in persistent pain, and over 40,000 lives lost each year to opioid misuse. Chronic back pain (CBP) is the most common pain disorder and one of the major reasons for prescribing opioids. Strategies to help reduce CBP pain without opioids are therefore urgent. A promising opioid alternative are psychological interventions that reduce pain intensity, interference and negative emotions, and do not just target the physical pain intensity as many of the traditional pharmacological approaches do. However, these interventions are not often temporally aligned with pain episodes. We propose to establish diagnostic physiological markers of ongoing clinical pain by capturing ongoing clinical pain and the associated physiological fluctuations and psychological processes. We will develop fully automated real-time detection of ongoing pain in N=80 CBP patients from physiological signs collected in everyday life. We will record multiple physiological signals (electroencephalogram (EEG), facial electromyography (EMG), electrooculography (EOG), electrodermal activity (EDA), and heart rate (HR)) from two wearable device, one worn around the ears (Earable) and one worn around the wrist (Empatica). The sensing system will be integrated with an experience sampling method (ESM) smartphone app to collect ratings of pain and psychological processes associated with pain episodes. Our goal in Aim 1 is to establish computational physiology-based models that can predict clinical pain in real-life. To achieve this, we will apply machine-learning techniques to physiological data preceding pain self-reports to build predictive models of ongoing pain, with the ultimate goal for these computational models to be able to trigger psychological interventions when needed most, which we aim to develop in our future research. Our goal in Aim 2 is to field-test these computational models in a new group of N=20 CBP patients. The proposed work will afford, for the first time, autonomous monitoring of clinical pain in real-life. If the real-life pain experience of patients can be captured in physiological patterns preceding pain, then automated tracking of physiology has considerable potential to improve the efficacy of psychological treatments, by providing signals to trigger just-in-time interventions. Overall, the proposed project will contribute fundamental scientific knowledge about psycho-physiological signs of real-life pain and lay the groundwork for translational efforts to improve outcomes of pain self-management and reduce opioid use.
美国正处于慢性疼痛和阿片类药物滥用的双重流行病之中,约有约。 20% 持续疼痛的人口,每年超过40,000人因滥用阿片类药物而丧生。慢性背痛(CBP)是 处方阿片类药物的最常见疼痛障碍和主要原因之一。帮助减少的策略 因此,不含阿片类药物的CBP疼痛是紧急的。有希望的阿片类药物替代方法是心理干预 这会降低疼痛强度,干扰和负面情绪,而不仅仅是针对身体疼痛强度 正如许多传统的药理学方法所做的那样。但是,这些干预措施在时间上并不常见 与疼痛发作对齐。 我们建议通过捕获持续的临床疼痛来确定持续的临床疼痛的诊断生理标记 临床疼痛以及相关的生理波动和心理过程。我们将完全发展 从收集的生理体征中的N = 80名CBP患者中持续疼痛的自动化实时检测 日常生活。我们将记录多个生理信号(脑电图(EEG),面部 从 两个可穿戴设备,一个戴在耳朵周围(可耳朵),另一个戴在手腕周围(empatica)。感应 系统将与体验抽样方法(ESM)智能手机应用程序集成以收集疼痛评分 和与疼痛发作相关的心理过程。我们的目标1是建立计算 基于生理学的模型可以预测现实生活中的临床疼痛。为了实现这一目标,我们将应用机器学习 在疼痛自我报告之前的生理数据技术以建立持续疼痛的预测模型, 这些计算模型能够在大多数需要时能够触发心理干预的最终目标, 我们旨在在未来的研究中发展。 AIM 2中我们的目标是对这些计算模型进行测试 一组新组N = 20 CBP患者。 拟议的工作将首次提供对现实生活中临床疼痛的自主监测。如果是 可以在疼痛之前以生理模式来捕获患者的现实生活疼痛经历,然后自动化 通过 提供信号以触发即时干预措施。总体而言,拟议的项目将贡献基本 关于现实生活中疼痛的心理生理学迹象的科学知识,并为翻译奠定了基础 努力改善疼痛自我管理的结果并减少阿片类药物的使用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Marta Ceko其他文献

Marta Ceko的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Marta Ceko', 18)}}的其他基金

Automated Physiological Assessment of Chronic Pain in Daily Life
日常生活中慢性疼痛的自动生理评估
  • 批准号:
    10369031
  • 财政年份:
    2021
  • 资助金额:
    $ 23.03万
  • 项目类别:

相似海外基金

Maternal immune activation remodeling of offspring glycosaminoglycan sulfation patterns during neurodevelopment
神经发育过程中后代糖胺聚糖硫酸化模式的母体免疫激活重塑
  • 批准号:
    10508305
  • 财政年份:
    2023
  • 资助金额:
    $ 23.03万
  • 项目类别:
Defining the neural basis for persistent obesity
定义持续性肥胖的神经基础
  • 批准号:
    10735128
  • 财政年份:
    2023
  • 资助金额:
    $ 23.03万
  • 项目类别:
Increasing initiation of evidence-based weight loss treatment
越来越多地开始开展循证减肥治疗
  • 批准号:
    10735201
  • 财政年份:
    2023
  • 资助金额:
    $ 23.03万
  • 项目类别:
Mechanistic insights of cortical hyperexcitability in ALS
ALS 皮质过度兴奋的机制见解
  • 批准号:
    10727465
  • 财政年份:
    2023
  • 资助金额:
    $ 23.03万
  • 项目类别:
Precision Medicine in Alzheimer’s Disease: A SMART Trial of Adaptive Exercises and Their Mechanisms of Action Using AT(N) Biomarkers to Optimize Aerobic-Fitness Responses
阿尔茨海默病的精准医学:使用 AT(N) 生物标志物优化有氧健身反应的适应性运动及其作用机制的 SMART 试验
  • 批准号:
    10581973
  • 财政年份:
    2023
  • 资助金额:
    $ 23.03万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了