Improving the representativeness of American Indian Tribal Behavioral Risk Factor Surveillance System (TBRFSS) by machine learning and propensity score based data integration approach A1
通过机器学习和基于倾向评分的数据集成方法提高美洲印第安人部落行为风险因素监测系统(TBRFSS)的代表性A1
基本信息
- 批准号:10063407
- 负责人:
- 金额:$ 11.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-26 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:AdultAgeAmericanAmerican IndiansBehavioralBehavioral Risk Factor Surveillance SystemCalibrationCensusesCodeCommunitiesCommunity SurveysCross-Sectional StudiesCustomDataData SourcesDiabetes MellitusDiseaseEpidemiologyEthnic groupEventFailureFundingFutureGeneral PopulationGeographic stateGoalsHealthHealth FairsHealth SurveysHealth behaviorHigh PrevalenceKansasMachine LearningMethodologyMethodsModelingNot Hispanic or LatinoOklahomaPerformancePopulationPopulation AnalysisPopulation StudyPrevalenceProbabilityProbability SamplesPublishingRaceResearchResearch PersonnelRespondentRisk FactorsSample SizeSamplingSmokingSurveysTarget PopulationsTestingTexasTimeTobaccoTrainingUnited States Indian Health ServiceWeightWorkYouthbasebehavioral studycigarette smokingcluster computingcostdata integrationdata qualitydesignexperienceimprovedindividualized preventioninnovationinsightmultidisciplinarynovelpersonalized medicinepopulation healthsimulationsmoking prevalencesuccesstherapy developmenttribal health
项目摘要
PROJECT SUMMARY
Previous studies showed discrepancies of health and behavior prevalence between American Indians (AI)
population and other racial or ethnic groups. Most health surveys have certain limitations when studying AI
population due to the small sample sizes for AI population. Data collected by AI Tribal Epidemiology Centers
(TECs) provides an excellent opportunity to conduct research for AI population due to sufficient sample size and
extensive information. However, most surveys conducted by TECs used non-probability sampling design (e.g.
convenient sample) due to its lower cost and increased time efficiency. Non-probability sample may suffer from
sampling, coverage and nonresponse errors without further proper adjustments. Such difficulties greatly
hampers the analysis of AI population in health and behavior research.
Our general hypothesis is that data integration by combining information from non-probability and probability
samples can reduce sampling, coverage and nonresponse errors in original non-probability sample. The Goal
of this project is to develop an accurate and robust data integration methodology for AI population analysis
specifically tailored to health and behavior research.
During the past years, we have 1) studied data integration using calibration and parametric modeling
approaches; 2) investigated machine learning and propensity score modeling methods in survey sampling and
other fields; and 3) assembled an experienced team of multi-disciplinary team of experts.
In this project, we propose to capitalize on our expertise and fulfill the following Specific Aims:
Aim 1. Develop a data integration approach using machine learning and propensity score modeling
We will develop machine learning and propensity score based data integration approaches to combine
information from non-probability and probability samples. Compared to existing methods (i.e., Calibration,
Parametric approach), our proposed approaches are more robust against the failure of underlying model
assumptions. The inference is more general and multi-purpose (e.g. one can estimate most parameters such as
means, totals and percentiles). Simulation studies will be performed to compare our proposed methods with
other existing methods. A computing package will be built to implement the method in other settings.
Aim 2. Evaluate the accuracy and robustness of the proposed method in AI health and behavior research
We will use real data to validate the proposed methods in terms of accuracy and robustness to the various data
types. The performance will also be assessed by comparing with results from existing data integration methods
such as calibration and parametric modeling approaches. The planned study takes advantage of a unique data
source and expands the impact of the Indian Health Service (IHS)-funded research. We expect this novel
integration method will vertically advance the field by facilitating the analysis based on non-probability sample,
which can provide in-depth understanding regarding the AI population health and behavior studies.
项目摘要
以往的研究表明,美国印第安人(AI)之间的健康和行为流行的差异
人口和其他种族或族裔群体。大多数健康调查在研究AI时都有一定的局限性
由于人工智能人群的样本量较小,人工智能部落流行病学中心收集的数据
(TEC)提供了一个很好的机会,进行研究的人工智能人口,由于足够的样本量,
广泛的信息。然而,大多数由TEC进行的调查使用非概率抽样设计(例如,
方便的样品),这是由于其较低的成本和增加的时间效率。非概率样本可能遭受
抽样、覆盖率和无应答误差,而不作进一步适当调整。这种困难极大
阻碍了健康和行为研究中对AI人群的分析。
我们的一般假设是,数据整合通过结合信息从非概率和概率
样本可以减少原非概率样本中的抽样误差、覆盖误差和无回答误差。目标
该项目的目的是为人工智能人口分析开发一种准确而强大的数据集成方法
专门为健康和行为研究量身定制。
在过去的几年里,我们1)研究了使用校准和参数建模的数据集成
方法; 2)调查抽样中的机器学习和倾向评分建模方法,
三是组建了一支经验丰富的多学科专家队伍。
在这个项目中,我们建议利用我们的专业知识,实现以下具体目标:
目标1。使用机器学习和倾向评分建模开发数据集成方法
我们将开发基于机器学习和倾向评分的数据集成方法,以将联合收割机
非概率和概率样本的信息。与现有方法相比(即,校准,
参数方法),我们提出的方法是更强大的对失败的基础模型
假设。推断是更一般和多用途的(例如,可以估计大多数参数,例如
平均数、总数和单位数)。模拟研究将进行比较,我们提出的方法与
现有的其他方法。将建立一个计算包,以在其他环境中实施该方法。
目标2.评估所提出的方法在人工智能健康和行为研究中的准确性和鲁棒性
我们将使用真实的数据来验证所提出的方法的准确性和鲁棒性的各种数据
类型还将通过与现有数据集成方法的结果进行比较来评估性能
例如校准和参数建模方法。这项计划中的研究利用了一个独特的数据,
来源和扩大印度卫生服务(IHS)资助的研究的影响。我们期待这部小说
集成方法将通过方便基于非概率样本的分析纵向推进该领域,
这可以提供关于AI人群健康和行为研究的深入了解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sixia Chen其他文献
Sixia Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sixia Chen', 18)}}的其他基金
Using a Novel Machine Learning Based Data Integration Procedure to Understand the Cherokee Nation Community Population Health
使用基于机器学习的新型数据集成程序来了解切罗基族社区人口健康状况
- 批准号:
10671754 - 财政年份:2021
- 资助金额:
$ 11.52万 - 项目类别:
Using a Novel Machine Learning Based Data Integration Procedure to Understand the Cherokee Nation Community Population Health
使用基于机器学习的新型数据集成程序来了解切罗基族社区人口健康状况
- 批准号:
10491197 - 财政年份:2021
- 资助金额:
$ 11.52万 - 项目类别:
Improving the representativeness of American Indian Tribal Behavioral Risk Factor Surveillance System (TBRFSS) by machine learning and propensity score based data integration approach A1
通过机器学习和基于倾向评分的数据集成方法提高美洲印第安人部落行为风险因素监测系统(TBRFSS)的代表性A1
- 批准号:
10271402 - 财政年份:2020
- 资助金额:
$ 11.52万 - 项目类别:
相似国自然基金
靶向递送一氧化碳调控AGE-RAGE级联反应促进糖尿病创面愈合研究
- 批准号:JCZRQN202500010
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
对香豆酸抑制AGE-RAGE-Ang-1通路改善海马血管生成障碍发挥抗阿尔兹海默病作用
- 批准号:2025JJ70209
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
AGE-RAGE通路调控慢性胰腺炎纤维化进程的作用及分子机制
- 批准号:
- 批准年份:2024
- 资助金额:0 万元
- 项目类别:面上项目
甜茶抑制AGE-RAGE通路增强突触可塑性改善小鼠抑郁样行为
- 批准号:2023JJ50274
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
蒙药额尔敦-乌日勒基础方调控AGE-RAGE信号通路改善术后认知功能障碍研究
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
补肾健脾祛瘀方调控AGE/RAGE信号通路在再生障碍性贫血骨髓间充质干细胞功能受损的作用与机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
LncRNA GAS5在2型糖尿病动脉粥样硬化中对AGE-RAGE 信号通路上相关基因的调控作用及机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
围绕GLP1-Arginine-AGE/RAGE轴构建探针组学方法探索大柴胡汤异病同治的效应机制
- 批准号:81973577
- 批准年份:2019
- 资助金额:55.0 万元
- 项目类别:面上项目
AGE/RAGE通路microRNA编码基因多态性与2型糖尿病并发冠心病的关联研究
- 批准号:81602908
- 批准年份:2016
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
高血糖激活滑膜AGE-RAGE-PKC轴致骨关节炎易感的机制研究
- 批准号:81501928
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Queer and Environmental Melancholia in American Coming-of-age Fiction: Narratives of Loss and Resistance in the Anthropocene
美国成长小说中的酷儿与环境忧郁:人类世的失落与抵抗的叙述
- 批准号:
2883761 - 财政年份:2023
- 资助金额:
$ 11.52万 - 项目类别:
Studentship
The Representations of "Nature" by 19th Century American Women Poets: Perspectives in the Age of "War
19世纪美国女诗人对“自然”的再现:“战争”时代的视角
- 批准号:
22K00434 - 财政年份:2022
- 资助金额:
$ 11.52万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Representations of Waste People in the New World: American National Identity in the Age of the Nation-State and Beyond
新世界中废人的表征:民族国家时代及以后的美国民族认同
- 批准号:
22K00491 - 财政年份:2022
- 资助金额:
$ 11.52万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The American Public Broadcasting in the Internet Age: How they adopt the System, Mission, and Regulations during the IT Revolution?
网络时代的美国公共广播:IT革命期间他们如何采用制度、使命和规则?
- 批准号:
20K13715 - 财政年份:2020
- 资助金额:
$ 11.52万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The Work of Art in the Age of Empathy: Analyzing American and Soviet Culture during the Interwar Period
移情时代的艺术作品:分析两次世界大战期间的美国和苏联文化
- 批准号:
20J40040 - 财政年份:2020
- 资助金额:
$ 11.52万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Latin American Antiracism in a 'Post-Racial' Age
“后种族”时代的拉丁美洲反种族主义
- 批准号:
ES/N012747/1 - 财政年份:2017
- 资助金额:
$ 11.52万 - 项目类别:
Research Grant
The Philosophy of May Massee, an Editor who Brought about the Golden Age of American Picture Books
开启美国图画书黄金时代的编辑梅·马西的哲学
- 批准号:
16K02512 - 财政年份:2016
- 资助金额:
$ 11.52万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Spaces of Education: Pedagogical Writing and Social Practice in the Age of American Romanticism
教育空间:美国浪漫主义时代的教学写作与社会实践
- 批准号:
323813051 - 财政年份:2016
- 资助金额:
$ 11.52万 - 项目类别:
Research Grants
Collaborative Research: American Innovations in an Age of Discovery: Teaching Science and Engineering through 3D-printed Historical Reconstructions
合作研究:发现时代的美国创新:通过 3D 打印历史重建教授科学与工程
- 批准号:
1510289 - 财政年份:2015
- 资助金额:
$ 11.52万 - 项目类别:
Continuing Grant
Collaborative Research: American Innovations in an Age of Discovery: Teaching Science and Engineering through 3D-printed Historical Reconstructions
合作研究:发现时代的美国创新:通过 3D 打印历史重建教授科学与工程
- 批准号:
1511155 - 财政年份:2015
- 资助金额:
$ 11.52万 - 项目类别:
Continuing Grant