Mechanisms and Biological functions of SPOUT methyltransferases
SPOUT甲基转移酶的机制和生物学功能
基本信息
- 批准号:10218211
- 负责人:
- 金额:$ 27.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-14 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdenosineAffectAmino Acid SequenceAnticodonArchaeaBindingBiochemicalBiologicalBiological AssayBiological ProcessBiologyBiophysicsCatalysisCellsChemicalsChimera organismComplementComplexCrystallizationDefectDeuteriumDiseaseEndocrineEnsureEnzymatic BiochemistryEnzymesEukaryotaExhibitsFamilyFluorouracilGeneticGenetic CodeGenetic TranscriptionGuanosineHealthHumanHuman BiologyHydrogenIndividualKineticsLifeLinkMaintenanceMass Spectrum AnalysisMethylationMethyltransferaseModelingModificationMolecularMolecular ConformationMutationNeurologicNucleic AcidsNucleotidesOrthologous GenePathway interactionsPhenotypePlayPositioning AttributeProcessProductionProtein BiosynthesisPurine NucleotidesRNARNA BiochemistryRNA metabolismReactionRibosomesRoentgen RaysRoleS-AdenosylhomocysteineS-AdenosylmethionineSaccharomyces cerevisiaeStructureSubstrate SpecificitySurfaceSyndromeSynthesis ChemistryTransfer RNATranslationsVariantVertebratesYeastsZebrafishanalogbasebiological adaptation to stressdimerdisease phenotypedrug sensitivityflexibilityhuman diseasein vitro activityin vivoinsightinterdisciplinary approachnew therapeutic targetnovelparalogous genestructural biologytRNA Methyltransferases
项目摘要
PROJECT SUMMARY/ ABSTRACT
Transfer RNAs (tRNAs) are the universal adaptor molecules necessary to convert the nucleic acid-based genetic
code to protein sequence during protein synthesis (translation) by the ribosome. This process is universally
conserved and fundamental to all life, and, as such, defects in the molecular players of translation, including
tRNAs, result in diverse human diseases. Specific chemical modifications such as methylation are common in
tRNA, but a detailed understanding of the enzymes that incorporate them and their contributions to tRNA function
(and disfunction in disease) have only recently emerged for a few select examples. Since the discovery of the
tRNA methyltransferase (Trm10) in Saccharomyces cerevisiae, an accumulating body of evidence, including
phenotypes in yeast and a multisymptomatic disease associated with human mutations, has established a
significant role for Trm10 in tRNA biology. To better understand the implications of Trm10 modification, the
mechanism by which Trm10 recognizes and acts on tRNA needs to be addressed. This project aims to determine
the molecular basis for Trm10 mechanism and function using a multi-disciplinary approach. Genetic, biochemical
and molecular enzymology approaches will be combined with structural analyses of enzyme-tRNA complexes,
and synthetic analogs of the native methyl donor, S-adenosyl-L-methionine, to uniquely identify the role of Trm10
in the maintenance of a high quality pool of tRNA. The studies will be performed in three complementary but
independent aims that will: 1) Determine the molecular mechanism of methylation by Trm10, using biophysical
and x-ray crystallographic structural analysis enabled by a novel mechanism (SAM analog)-based approach to
trap enzyme-tRNA complexes, and complemented by biochemical analyses of Trm10 variants and studies to
identify alternative substrates for Trm10 enzymes, cellular localization and native modification status; 2) Identify
the molecular basis for tRNA substrate-selectivity of yeast and human Trm10 orthologs through detailed
consideration of tRNA structure and stability; and, 3) Assess the roles of m1G9 in Trm10 target tRNAs in yeast
and the zebrafish vertebrate model. Collectively, the proposed studies will advance the fields of enzymology,
RNA biochemistry and tRNA biology by providing mechanistic and biological insight into a tRNA modification
enzyme that is universally conserved among eukaryotes and critically important for human biology, yet whose
molecular mechanism and biological functions are not at all understood. These results will also provide new
insight into the dynamic landscape of tRNA modifications in multicellular eukaryotes.
项目总结/摘要
转移RNA(transfer RNA,tRNA)是将基于核酸的遗传物质转化为RNA所必需的通用接头分子。
在核糖体合成(翻译)蛋白质的过程中,将编码转化为蛋白质序列。这个过程是普遍的。
保守的和基本的所有生命,并因此,缺陷的分子球员的翻译,包括
tRNA导致多种人类疾病。特定的化学修饰,如甲基化,
tRNA,而是对整合它们的酶及其对tRNA功能的贡献的详细了解
(and疾病中的功能障碍)只是最近才出现的几个选择的例子。自从发现了
酿酒酵母中的tRNA甲基转移酶(Trm 10),一个不断积累的证据,包括
酵母的表型和与人类突变相关的多症状疾病,已经建立了一个
Trm 10在tRNA生物学中的重要作用。为了更好地理解Trm 10修改的含义,
Trm 10识别和作用于tRNA的机制需要解决。该项目旨在确定
Trm 10机制和功能的分子基础,使用多学科的方法。遗传的,生化的
分子酶学方法将与酶-tRNA复合物的结构分析相结合,
和天然甲基供体S-腺苷-L-甲硫氨酸的合成类似物,以独特地鉴定Trm 10的作用
维持高质量的tRNA库。这些研究将在三个互补的,但
独立的目标,将:1)确定甲基化的分子机制Trm 10,使用生物物理
和X射线晶体学结构分析,通过基于新机制(SAM类似物)的方法实现,
捕获酶-tRNA复合物,并辅以Trm 10变体的生化分析和研究,
鉴定Trm 10酶的替代底物、细胞定位和天然修饰状态; 2)鉴定
酵母和人Trm 10直系同源物的tRNA底物选择性的分子基础,通过详细的
考虑tRNA结构和稳定性; 3)评估m1 G9在酵母中Trm 10靶tRNA中的作用
和斑马鱼脊椎动物模型。总的来说,拟议的研究将推进酶学领域,
RNA生物化学和tRNA生物学,通过提供对tRNA修饰的机制和生物学见解
一种在真核生物中普遍保守的酶,对人类生物学至关重要,但其
分子机制和生物学功能完全不清楚。这些结果也将提供新的
深入了解多细胞真核生物中tRNA修饰的动态景观。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Graeme L Conn其他文献
Recombinant RNA expression
重组 RNA 表达
- DOI:
10.1038/nmeth0707-547 - 发表时间:
2007-07-01 - 期刊:
- 影响因子:32.100
- 作者:
Christine M Dunham;Graeme L Conn - 通讯作者:
Graeme L Conn
Graeme L Conn的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Graeme L Conn', 18)}}的其他基金
dsRNA regulation of the cytosolic innate immune system
胞质先天免疫系统的 dsRNA 调节
- 批准号:
10736791 - 财政年份:2019
- 资助金额:
$ 27.21万 - 项目类别:
dsRNA regulation of the cytosolic innate immune system
胞质先天免疫系统的 dsRNA 调节
- 批准号:
9891948 - 财政年份:2019
- 资助金额:
$ 27.21万 - 项目类别:
dsRNA regulation of the cytosolic innate immune system
胞质先天免疫系统的 dsRNA 调节
- 批准号:
10359208 - 财政年份:2019
- 资助金额:
$ 27.21万 - 项目类别:
Mechanisms and Biological functions of SPOUT methyltransferases
SPOUT甲基转移酶的机制和生物学功能
- 批准号:
9980946 - 财政年份:2018
- 资助金额:
$ 27.21万 - 项目类别:
Mechanisms and biological functions of SPOUT methyltransferases
SPOUT甲基转移酶的机制和生物学功能
- 批准号:
10736306 - 财政年份:2018
- 资助金额:
$ 27.21万 - 项目类别:
Antimicrobial Resistance and Therapeutic Discovery Training Program
抗菌素耐药性和治疗发现培训计划
- 批准号:
10599247 - 财政年份:2014
- 资助金额:
$ 27.21万 - 项目类别:
Antimicrobial Resistance and Therapeutic Discovery Training Program
抗菌素耐药性和治疗发现培训计划
- 批准号:
10381447 - 财政年份:2014
- 资助金额:
$ 27.21万 - 项目类别:
Structural studies of PKR regulation by viral non-coding RNA
病毒非编码RNA调控PKR的结构研究
- 批准号:
8386211 - 财政年份:2012
- 资助金额:
$ 27.21万 - 项目类别:
Structural studies of PKR regulation by viral non-coding RNA
病毒非编码RNA调控PKR的结构研究
- 批准号:
8496700 - 财政年份:2012
- 资助金额:
$ 27.21万 - 项目类别:
相似国自然基金
基于ADK/Adenosine调控DNA甲基化探讨“利湿化瘀通络”法对2型糖尿病肾病足细胞裂孔膜损伤的干预机制研究
- 批准号:82074359
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
细胞外腺苷(Adenosine)作为干细胞旁分泌因子的生物学鉴定和功能分析
- 批准号:81570244
- 批准年份:2015
- 资助金额:57.0 万元
- 项目类别:面上项目
Adenosine诱导A1/A2AR稳态失衡启动慢性低灌注白质炎性损伤及其机制
- 批准号:81171113
- 批准年份:2011
- 资助金额:55.0 万元
- 项目类别:面上项目
相似海外基金
Targeting the A2B Adenosine Receptor for Immunoprevention of Pancreatic Cancer
靶向 A2B 腺苷受体用于胰腺癌的免疫预防
- 批准号:
10929664 - 财政年份:2023
- 资助金额:
$ 27.21万 - 项目类别:
Exploring the role of adenosine A2A receptors in Schizophrenia using opto-pharmacologically controlled allosteric modulation.
利用光药理学控制的变构调节探索腺苷 A2A 受体在精神分裂症中的作用。
- 批准号:
23K14685 - 财政年份:2023
- 资助金额:
$ 27.21万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The Role of Adenosine Kinase in Mixed Diastolic Heart Failure and Alzheimer Disease
腺苷激酶在混合性舒张性心力衰竭和阿尔茨海默病中的作用
- 批准号:
10679989 - 财政年份:2023
- 资助金额:
$ 27.21万 - 项目类别:
Allostery-driven G protein selectivity in the adenosine A1 receptor
腺苷 A1 受体中变构驱动的 G 蛋白选择性
- 批准号:
BB/W016974/1 - 财政年份:2023
- 资助金额:
$ 27.21万 - 项目类别:
Research Grant
Investigation of new test methods for adenosine-sensitive atrioventricular block
腺苷敏感型房室传导阻滞新检测方法的探讨
- 批准号:
23K07566 - 财政年份:2023
- 资助金额:
$ 27.21万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Probing the role of adenosine pathway in SIV pathogenesis
探讨腺苷途径在 SIV 发病机制中的作用
- 批准号:
10760676 - 财政年份:2023
- 资助金额:
$ 27.21万 - 项目类别:
The role of A1 adenosine receptor signaling in the decline of S. pneumoniae killing by neutrophils in vaccinated aged hosts
A1 腺苷受体信号传导在疫苗接种老年宿主中中性粒细胞杀伤肺炎链球菌下降中的作用
- 批准号:
10605737 - 财政年份:2023
- 资助金额:
$ 27.21万 - 项目类别:
Adenosine triphosphate as a master variable for biomass in the oceanographic context
三磷酸腺苷作为海洋学背景下生物量的主变量
- 批准号:
2319114 - 财政年份:2023
- 资助金额:
$ 27.21万 - 项目类别:
Standard Grant
The Biology of Microglia: Adenosine A3 Receptor Suppression
小胶质细胞的生物学:腺苷 A3 受体抑制
- 批准号:
RGPIN-2019-06289 - 财政年份:2022
- 资助金额:
$ 27.21万 - 项目类别:
Discovery Grants Program - Individual
Postnatal development of adenosine kinase in the brainstem network that controls breathing
控制呼吸的脑干网络中腺苷激酶的出生后发育
- 批准号:
573323-2022 - 财政年份:2022
- 资助金额:
$ 27.21万 - 项目类别:
University Undergraduate Student Research Awards