Mechanisms and biological functions of SPOUT methyltransferases
SPOUT甲基转移酶的机制和生物学功能
基本信息
- 批准号:10736306
- 负责人:
- 金额:$ 31.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-14 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdoptedAmino Acid SequenceArchaeaAspartic Acid-Specific tRNAAwardBiochemicalBiologicalBiological AssayBiological ModelsBiological ProcessBiologyCell physiologyCellsChemicalsComplementComplexCryoelectron MicroscopyDefectDiseaseEndocrineEnsureEnzymatic BiochemistryEnzymesEukaryotaExhibitsFamilyFunctional disorderGenerationsGeneticGenetic CodeGenetic ModelsHealthHomologous GeneHumanIndividualInvestigationKnowledgeLifeLigationMaintenanceMethylationMethyltransferaseModelingModificationMolecularMutationNeurologicNucleic AcidsNucleotidesOrganismOrthologous GenePathway interactionsPatternPhenotypePositioning AttributeProcessProductionProtein BiosynthesisProteinsPurine NucleotidesQuality ControlRNARNA BiochemistryRibosomesRoleS-AdenosylhomocysteineS-AdenosylmethionineSaccharomyces cerevisiaeSpecificityStructureSubstrate SpecificitySyndromeSystemTimeTissuesTransfer RNATranslationsYeastsZebrafishanalogbasebiochemical toolsbiological adaptation to stresscofactordimerdisease phenotypedrug sensitivityfitnessgenetic approachhuman diseasein vitro Assayin vivoinsightinterdisciplinary approachloss of functionmembermonomermutantnew therapeutic targetposttranscriptionaltRNA Methyltransferasesyeast genetics
项目摘要
PROJECT SUMMARY/ ABSTRACT
Transfer RNAs (tRNAs) are the universal adaptor molecules necessary to convert the nucleic acid-based genetic
code into protein sequence during protein synthesis (translation) by the ribosome. This process is universally
conserved and fundamental to all life, and, as such, defects in the molecular players of translation, including
tRNAs, result in diverse human diseases. Specific chemical modifications such as methylation are common in
tRNA, but a detailed understanding of the enzymes that incorporate them and their contributions to tRNA function
(and disfunction in disease) have only recently emerged for a few select examples. Since the discovery of the
tRNA methyltransferase (Trm10) in Saccharomyces cerevisiae, an accumulating body of evidence, including
phenotypes in yeast and a multisymptomatic disease associated with human mutations, has established a
significant role for Trm10 in tRNA biology. To better understand the implications of Trm10 modification, the
mechanisms by which Trm10 family enzymes specifically recognize and act on their substrate tRNA, and the
impact of tRNA modifications on important cellular processes need to be addressed. This project will determine
the molecular basis for Trm10 mechanism and function using a multi-disciplinary approach. Genetic, biochemical
and molecular enzymology approaches will be combined with structural analyses of enzyme-tRNA complexes
using synthetic analogs of the native methyl donor, S-adenosyl-L-methionine, to uniquely identify the role of
Trm10 in the maintenance of a high-quality pool of tRNA. A newly developed vertebrate model for Trm10 function
will enable investigation of previously challenging questions on Trm10's role in the biological function of
multicellular eukaryotes. The studies will be performed in three complementary but independent aims that will:
1) Determine how specific tRNA substrates are selected for modification by yeast and vertebrate Trm10 enzymes
using structural, biochemical and genetic approaches; 2) Assess the molecular basis for and biological
significance of the uniquely conserved vertebrate m1A9 modification exploiting a new vertebrate model for Trm10
function, and 3) Identify tRNA-specific functions for G9 modification in yeast and zebrafish using complementary
genetic approaches in both model species. Collectively, the proposed studies will advance the fields of
enzymology, RNA biochemistry, and tRNA biology by providing mechanistic and biological insight into a tRNA
modification enzyme that is universally conserved among eukaryotes and is critically important for human health,
yet whose molecular mechanism and biological functions are not at all understood. These results will also provide
new insight into the dynamic landscape of tRNA modifications in multicellular eukaryotes.
项目摘要/摘要
转移RNAs(TRNAs)是转化以核酸为基础的基因所必需的通用接头分子
核糖体在蛋白质合成(翻译)过程中编码成蛋白质序列。这个过程是普遍存在的
对所有生命来说都是保守的和基本的,因此,翻译的分子参与者中的缺陷,包括
TRNA,会导致多种人类疾病。甲基化等特殊的化学修饰在
TRNA,但对结合它们的酶及其对tRNA功能的贡献有详细的了解
(和疾病中的功能障碍)只是最近才出现的几个精选例子。自从发现了
酿酒酵母中的tRNA甲基转移酶(Trm10),这是一个积累的证据,包括
酵母的表型和一种与人类突变相关的多症状疾病,已经建立了一个
Trm10在tRNA生物学中的重要作用。为了更好地理解Trm10修改的含义,
Trm10家族酶特异性识别和作用于底物tRNA的机制,以及
需要解决tRNA修饰对重要细胞过程的影响。这个项目将决定
用多学科方法研究Trm10机制和功能的分子基础。遗传、生化
分子酶学方法将与酶-tRNA复合体的结构分析相结合
利用合成的天然甲基供体S-腺苷-L-蛋氨酸的类似物来唯一地鉴定
Trm10在维持高质量的tRNA池中。一种新的Trm10功能的脊椎动物模型
将使以前关于Trm10的挑战性问题的调查成为可能,S在Trm10的生物学功能中的作用
多细胞真核生物。这些研究将以三个相辅相成但独立的目标进行,它们将:
1)确定酵母和脊椎动物Trm10酶如何选择特定的tRNA底物进行修饰
使用结构、生物化学和遗传学方法;2)评估生物的分子基础
唯一保守的脊椎动物m1A9基因修饰的意义利用新的脊椎动物模型研究trm10
功能,以及3)鉴定酵母和斑马鱼中针对G9修饰的tRNA特异性功能
在两个模式物种中都有遗传方法。总的来说,拟议的研究将推动以下领域的发展
酶学、RNA生物化学和tRNA生物学,通过提供对tRNA的机制和生物学见解
修饰酶在真核生物中普遍保守,对人类健康至关重要,
然而,其分子机制和生物学功能尚不清楚。这些结果还将提供
对多细胞真核生物中tRNA修饰的动态格局的新见解。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Tied up in knots: Untangling substrate recognition by the SPOUT methyltransferases.
- DOI:10.1016/j.jbc.2022.102393
- 发表时间:2022-10
- 期刊:
- 影响因子:4.8
- 作者:Strassler, Sarah E.;Bowles, Isobel E.;Dey, Debayan;Jackman, Jane E.;Conn, Graeme L.
- 通讯作者:Conn, Graeme L.
Insights into Catalytic and tRNA Recognition Mechanism of the Dual-Specific tRNA Methyltransferase from Thermococcus kodakarensis.
深入了解柯达热球菌双特异性 tRNA 甲基转移酶的催化和 tRNA 识别机制。
- DOI:10.3390/genes10020100
- 发表时间:2019
- 期刊:
- 影响因子:3.5
- 作者:Krishnamohan,Aiswarya;Dodbele,Samantha;Jackman,JaneE
- 通讯作者:Jackman,JaneE
Transient kinetic analysis for studying ionizations in RNA modification enzyme mechanisms.
- DOI:10.1016/bs.mie.2021.07.002
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:A. Krishnamohan;Samantha Dodbele;J. Jackman
- 通讯作者:A. Krishnamohan;Samantha Dodbele;J. Jackman
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Graeme L Conn其他文献
Recombinant RNA expression
重组 RNA 表达
- DOI:
10.1038/nmeth0707-547 - 发表时间:
2007-07-01 - 期刊:
- 影响因子:32.100
- 作者:
Christine M Dunham;Graeme L Conn - 通讯作者:
Graeme L Conn
Graeme L Conn的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Graeme L Conn', 18)}}的其他基金
dsRNA regulation of the cytosolic innate immune system
胞质先天免疫系统的 dsRNA 调节
- 批准号:
10736791 - 财政年份:2019
- 资助金额:
$ 31.01万 - 项目类别:
dsRNA regulation of the cytosolic innate immune system
胞质先天免疫系统的 dsRNA 调节
- 批准号:
9891948 - 财政年份:2019
- 资助金额:
$ 31.01万 - 项目类别:
dsRNA regulation of the cytosolic innate immune system
胞质先天免疫系统的 dsRNA 调节
- 批准号:
10359208 - 财政年份:2019
- 资助金额:
$ 31.01万 - 项目类别:
Mechanisms and Biological functions of SPOUT methyltransferases
SPOUT甲基转移酶的机制和生物学功能
- 批准号:
9980946 - 财政年份:2018
- 资助金额:
$ 31.01万 - 项目类别:
Mechanisms and Biological functions of SPOUT methyltransferases
SPOUT甲基转移酶的机制和生物学功能
- 批准号:
10218211 - 财政年份:2018
- 资助金额:
$ 31.01万 - 项目类别:
Antimicrobial Resistance and Therapeutic Discovery Training Program
抗菌素耐药性和治疗发现培训计划
- 批准号:
10599247 - 财政年份:2014
- 资助金额:
$ 31.01万 - 项目类别:
Antimicrobial Resistance and Therapeutic Discovery Training Program
抗菌素耐药性和治疗发现培训计划
- 批准号:
10381447 - 财政年份:2014
- 资助金额:
$ 31.01万 - 项目类别:
Structural studies of PKR regulation by viral non-coding RNA
病毒非编码RNA调控PKR的结构研究
- 批准号:
8386211 - 财政年份:2012
- 资助金额:
$ 31.01万 - 项目类别:
Structural studies of PKR regulation by viral non-coding RNA
病毒非编码RNA调控PKR的结构研究
- 批准号:
8496700 - 财政年份:2012
- 资助金额:
$ 31.01万 - 项目类别:
相似海外基金
How novices write code: discovering best practices and how they can be adopted
新手如何编写代码:发现最佳实践以及如何采用它们
- 批准号:
2315783 - 财政年份:2023
- 资助金额:
$ 31.01万 - 项目类别:
Standard Grant
One or Several Mothers: The Adopted Child as Critical and Clinical Subject
一位或多位母亲:收养的孩子作为关键和临床对象
- 批准号:
2719534 - 财政年份:2022
- 资助金额:
$ 31.01万 - 项目类别:
Studentship
A material investigation of the ceramic shards excavated from the Omuro Ninsei kiln site: Production techniques adopted by Nonomura Ninsei.
对大室仁清窑遗址出土的陶瓷碎片进行材质调查:野野村仁清采用的生产技术。
- 批准号:
20K01113 - 财政年份:2020
- 资助金额:
$ 31.01万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2633211 - 财政年份:2020
- 资助金额:
$ 31.01万 - 项目类别:
Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2436895 - 财政年份:2020
- 资助金额:
$ 31.01万 - 项目类别:
Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2633207 - 财政年份:2020
- 资助金额:
$ 31.01万 - 项目类别:
Studentship
A Study on Mutual Funds Adopted for Individual Defined Contribution Pension Plans
个人设定缴存养老金计划采用共同基金的研究
- 批准号:
19K01745 - 财政年份:2019
- 资助金额:
$ 31.01万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The limits of development: State structural policy, comparing systems adopted in two European mountain regions (1945-1989)
发展的限制:国家结构政策,比较欧洲两个山区采用的制度(1945-1989)
- 批准号:
426559561 - 财政年份:2019
- 资助金额:
$ 31.01万 - 项目类别:
Research Grants
Securing a Sense of Safety for Adopted Children in Middle Childhood
确保被收养儿童的中期安全感
- 批准号:
2236701 - 财政年份:2019
- 资助金额:
$ 31.01万 - 项目类别:
Studentship
Structural and functional analyses of a bacterial protein translocation domain that has adopted diverse pathogenic effector functions within host cells
对宿主细胞内采用多种致病效应功能的细菌蛋白易位结构域进行结构和功能分析
- 批准号:
415543446 - 财政年份:2019
- 资助金额:
$ 31.01万 - 项目类别:
Research Fellowships