Preparing the Next Generation of Biostatisticians in the Era of Data and Translational Sciences
在数据和转化科学时代培养下一代生物统计学家
基本信息
- 批准号:10219349
- 负责人:
- 金额:$ 24.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdoptionAreaAttentionAwardBioinformaticsBiomedical ResearchBiometryBiostatistical MethodsClinicalCollaborationsCommunitiesComplexComputational BiologyConceptionsDataData ScienceDevelopmentDisciplineElectronic Health RecordEnrollmentEnsureEnvironmentEvaluationEvidence Based MedicineExposure toFacultyFutureGenomicsGoalsHealth SciencesHealth systemImaging technologyInstitutionInternationalJointsKnowledgeLearningMedical ImagingMedical centerMethodologyMethodsModelingModernizationNamesNational Heart, Lung, and Blood InstituteNorth CarolinaObservational StudyParticipantPlayPoliciesPositioning AttributePrincipal InvestigatorProgram EffectivenessRequest for ApplicationsResearchResearch PersonnelResearch TrainingResourcesRoleSchoolsScienceScientistStatistical MethodsStrategic PlanningStructureStudentsTalentsTrainingTraining ProgramsTranslational ResearchTranslationsUnderrepresented PopulationsUnited States National Institutes of HealthUniversitiesanalytical methodbig biomedical datacareercareer developmentclinical trial analysiscohortcomputer sciencecomputerized toolsdata resourcedesigneducation researchexperiencefield tripgraduate studenthealth science researchinnovationinsightinstructorinterestinvestigator traininglaboratory experimentlectureslensmachine learning methodmultidisciplinarynext generationprogramspublic health researchrecruitresponseskillssoundstatistical and machine learningstatisticssummer institutesummer programsummer researchtoolundergraduate student
项目摘要
PROJECT SUMMARY/ABSTRACT
In the era of newly emerging computational tools for data science, biostatisticians need to play a fundamental
role in health sciences research. There is an urgent need to encourage US Citizens and Permanent Residents
to pursue graduate training in biostatistics. The design, conduct, and analysis of clinical trials and
observational studies; the setting of regulatory policy; and the conception of laboratory experiments have been
shaped by the fundamental contributions of biostatisticians for decades. Advances in genomics, medical
imaging technologies, and computational biology; the increasing emphasis on precision and evidence-based
medicine; and the widespread adoption of electronic health records; demand the skills of biostatisticians
trained to collaborate effectively in a multidisciplinary environment and to develop statistical and machine
learning methods to address the challenges presented by this data-rich revolutionary era of health sciences
research. The proposed summer program which includes world-renowned clinical scientists and
biostatisticians from two local universities, will provide an immense opportunity for student participants to learn
basic yet modern statistical methods that are critical to uncovering new insights from such big and complex
biomedical data and also illustrate the potential pitfalls of confounding and bias that may arise when analyzing
biomedical data. A unique feature of the proposed training program is thus to expose the participants to not
only basic statistical methods but also to the topics of computer science and bioinformatics which will be
invaluable in creating the multidisciplinary teams required to tackle the complex research questions that often
requires multipronged approaches. The proposed six-week training program will be structured around the
NIH's Translation Science Spectrum and will introduce participants to opportunities in biostatistics through the
lens of the science advanced by the contributions of biostatisticians. Following an initial set of weeks on basic
training of biostatistical methods, the program will culminate in a data hack-a-thon style competition in which
participants will employ the statistical and scientific knowledge gained during the program to produce the most
innovative, statistically-sound, scientifically-relevant and effectively-communicated response to a set of
research questions. The proposed research education program will enroll up to 20 such participants from
across the nation and, through lectures, field trips, and opportunities to analyze data from real health sciences,
inspire them to pursue graduate training. The program will draw upon considerable past collaborations and
complementary resources of two local world-renowned universities to provide participants with an unparalleled
view of the field, including award-winning instructors, internationally known methodological and clinical
researchers, and a local area rich in opportunities to showcase careers in biostatistics. Special efforts will be
made to enroll participants from underrepresented groups. Participants will be followed after completion, and
the numbers attending graduate school in statistics and pursuing biostatistics careers will be documented.
项目总结/文摘
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sujit Kumar Ghosh其他文献
Quenching of fluorescence of 3,7-diamino-2,8-dimethyl-5-phenyl phenazinium chloride by halides and pseudohalides in mixed micellar media
- DOI:
10.1016/j.molliq.2005.08.003 - 发表时间:
2006-02-15 - 期刊:
- 影响因子:
- 作者:
Pijus Kanti Khatua;Sujit Kumar Ghosh;S.C. Bhattacharya - 通讯作者:
S.C. Bhattacharya
Effect of artificial sweetener saccharin on lysozyme aggregation: A combined spectroscopic and emin silico/em approach
人工甜味剂糖精对溶菌酶聚集的影响:一种光谱学和分子模拟相结合的方法
- DOI:
10.1016/j.saa.2022.122269 - 发表时间:
2023-04-05 - 期刊:
- 影响因子:4.600
- 作者:
Rushali Dudure;Kapil Ganorkar;Vishal Beldar;Sujit Kumar Ghosh;Alok Kumar Panda;Manojkumar Jadhao - 通讯作者:
Manojkumar Jadhao
Sujit Kumar Ghosh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sujit Kumar Ghosh', 18)}}的其他基金
Preparing the Next Generation of Biostatisticians in the Era of Data and Translational Sciences
在数据和转化科学时代培养下一代生物统计学家
- 批准号:
9888421 - 财政年份:2019
- 资助金额:
$ 24.98万 - 项目类别:
相似海外基金
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
- 批准号:
10093543 - 财政年份:2024
- 资助金额:
$ 24.98万 - 项目类别:
Collaborative R&D
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
- 批准号:
24K16436 - 财政年份:2024
- 资助金额:
$ 24.98万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 24.98万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 24.98万 - 项目类别:
EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
- 批准号:
24K20973 - 财政年份:2024
- 资助金额:
$ 24.98万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 24.98万 - 项目类别:
EU-Funded
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
- 批准号:
10075502 - 财政年份:2023
- 资助金额:
$ 24.98万 - 项目类别:
Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
- 批准号:
10089082 - 财政年份:2023
- 资助金额:
$ 24.98万 - 项目类别:
EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
- 批准号:
481560 - 财政年份:2023
- 资助金额:
$ 24.98万 - 项目类别:
Operating Grants
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
- 批准号:
2321091 - 财政年份:2023
- 资助金额:
$ 24.98万 - 项目类别:
Standard Grant














{{item.name}}会员




