Preparing the Next Generation of Biostatisticians in the Era of Data and Translational Sciences
在数据和转化科学时代培养下一代生物统计学家
基本信息
- 批准号:10219349
- 负责人:
- 金额:$ 24.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdoptionAreaAttentionAwardBioinformaticsBiomedical ResearchBiometryBiostatistical MethodsClinicalCollaborationsCommunitiesComplexComputational BiologyConceptionsDataData ScienceDevelopmentDisciplineElectronic Health RecordEnrollmentEnsureEnvironmentEvaluationEvidence Based MedicineExposure toFacultyFutureGenomicsGoalsHealth SciencesHealth systemImaging technologyInstitutionInternationalJointsKnowledgeLearningMedical ImagingMedical centerMethodologyMethodsModelingModernizationNamesNational Heart, Lung, and Blood InstituteNorth CarolinaObservational StudyParticipantPlayPoliciesPositioning AttributePrincipal InvestigatorProgram EffectivenessRequest for ApplicationsResearchResearch PersonnelResearch TrainingResourcesRoleSchoolsScienceScientistStatistical MethodsStrategic PlanningStructureStudentsTalentsTrainingTraining ProgramsTranslational ResearchTranslationsUnderrepresented PopulationsUnited States National Institutes of HealthUniversitiesanalytical methodbig biomedical datacareercareer developmentclinical trial analysiscohortcomputer sciencecomputerized toolsdata resourcedesigneducation researchexperiencefield tripgraduate studenthealth science researchinnovationinsightinstructorinterestinvestigator traininglaboratory experimentlectureslensmachine learning methodmultidisciplinarynext generationprogramspublic health researchrecruitresponseskillssoundstatistical and machine learningstatisticssummer institutesummer programsummer researchtoolundergraduate student
项目摘要
PROJECT SUMMARY/ABSTRACT
In the era of newly emerging computational tools for data science, biostatisticians need to play a fundamental
role in health sciences research. There is an urgent need to encourage US Citizens and Permanent Residents
to pursue graduate training in biostatistics. The design, conduct, and analysis of clinical trials and
observational studies; the setting of regulatory policy; and the conception of laboratory experiments have been
shaped by the fundamental contributions of biostatisticians for decades. Advances in genomics, medical
imaging technologies, and computational biology; the increasing emphasis on precision and evidence-based
medicine; and the widespread adoption of electronic health records; demand the skills of biostatisticians
trained to collaborate effectively in a multidisciplinary environment and to develop statistical and machine
learning methods to address the challenges presented by this data-rich revolutionary era of health sciences
research. The proposed summer program which includes world-renowned clinical scientists and
biostatisticians from two local universities, will provide an immense opportunity for student participants to learn
basic yet modern statistical methods that are critical to uncovering new insights from such big and complex
biomedical data and also illustrate the potential pitfalls of confounding and bias that may arise when analyzing
biomedical data. A unique feature of the proposed training program is thus to expose the participants to not
only basic statistical methods but also to the topics of computer science and bioinformatics which will be
invaluable in creating the multidisciplinary teams required to tackle the complex research questions that often
requires multipronged approaches. The proposed six-week training program will be structured around the
NIH's Translation Science Spectrum and will introduce participants to opportunities in biostatistics through the
lens of the science advanced by the contributions of biostatisticians. Following an initial set of weeks on basic
training of biostatistical methods, the program will culminate in a data hack-a-thon style competition in which
participants will employ the statistical and scientific knowledge gained during the program to produce the most
innovative, statistically-sound, scientifically-relevant and effectively-communicated response to a set of
research questions. The proposed research education program will enroll up to 20 such participants from
across the nation and, through lectures, field trips, and opportunities to analyze data from real health sciences,
inspire them to pursue graduate training. The program will draw upon considerable past collaborations and
complementary resources of two local world-renowned universities to provide participants with an unparalleled
view of the field, including award-winning instructors, internationally known methodological and clinical
researchers, and a local area rich in opportunities to showcase careers in biostatistics. Special efforts will be
made to enroll participants from underrepresented groups. Participants will be followed after completion, and
the numbers attending graduate school in statistics and pursuing biostatistics careers will be documented.
项目摘要/摘要
在新兴的数据科学计算工具的时代,生物统计学家需要发挥基本
在健康科学研究中的作用。迫切需要鼓励美国公民和永久居民
进行生物统计学研究生培训。临床试验的设计,行为和分析以及
观察研究;制定监管政策;实验室实验的概念已经
几十年来,由生物统计学家的基本贡献塑造。基因组学的进步,医学
成像技术和计算生物学;越来越重视精确和基于证据的
药品;并广泛采用电子健康记录;要求生物统计学家的技能
经过培训可以在多学科环境中有效合作并开发统计和机器
解决这个数据丰富的健康科学革命时代所面临的挑战的学习方法
研究。拟议的夏季计划,其中包括世界知名的临床科学家和
来自两所当地大学的生物统计学家将为学生参与者提供巨大的机会学习
基本而现代的统计方法,对于从如此大而复杂的新见解至关重要
生物医学数据,还说明了分析时可能出现的混杂和偏见的潜在陷阱
生物医学数据。因此,拟议培训计划的独特功能是使参与者不
仅基本的统计方法,也是计算机科学和生物信息学的主题
创建经常解决复杂研究问题所需的多学科团队的宝贵值得
需要多收益的方法。拟议的六周培训计划将围绕
NIH的翻译科学范围,并将通过
生物统计学家的贡献提出的科学镜头。在基本的初始数周之后
培训生物统计学方法,该计划将在数据骇客竞争中达到最终形式
参与者将采用计划期间获得的统计和科学知识来生产最多
创新的,统计的,与科学相关的,有效地交往的反应
研究问题。拟议的研究教育计划最多将参加20名此类参与者
在全国各地,通过讲座,实地考察和机会分析来自真正健康科学的数据,
激发他们接受研究生培训。该计划将借鉴过去的大量合作和
两所世界知名大学的互补资源,为参与者提供无与伦比的资源
该领域的视图,包括屡获殊荣的讲师,国际知名的方法论和临床
研究人员和一个地区丰富的机会来展示生物统计学的职业。特殊努力将是
招募了代表性不足的群体的参与者。完成后将遵循参与者,
就读统计研究生院并从事生物统计学职业的人数将有记录。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sujit Kumar Ghosh其他文献
Quenching of fluorescence of 3,7-diamino-2,8-dimethyl-5-phenyl phenazinium chloride by halides and pseudohalides in mixed micellar media
- DOI:
10.1016/j.molliq.2005.08.003 - 发表时间:
2006-02-15 - 期刊:
- 影响因子:
- 作者:
Pijus Kanti Khatua;Sujit Kumar Ghosh;S.C. Bhattacharya - 通讯作者:
S.C. Bhattacharya
Sujit Kumar Ghosh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sujit Kumar Ghosh', 18)}}的其他基金
Preparing the Next Generation of Biostatisticians in the Era of Data and Translational Sciences
在数据和转化科学时代培养下一代生物统计学家
- 批准号:
9888421 - 财政年份:2019
- 资助金额:
$ 24.98万 - 项目类别:
相似国自然基金
采用新型视觉-电刺激配对范式长期、特异性改变成年期动物视觉系统功能可塑性
- 批准号:32371047
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
破解老年人数字鸿沟:老年人采用数字技术的决策过程、客观障碍和应对策略
- 批准号:72303205
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
通过抑制流体运动和采用双能谱方法来改进烧蚀速率测量的研究
- 批准号:12305261
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
采用多种稀疏自注意力机制的Transformer隧道衬砌裂缝检测方法研究
- 批准号:62301339
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
政策激励、信息传递与农户屋顶光伏技术采用提升机制研究
- 批准号:72304103
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Implementation of Innovative Treatment for Moral Injury Syndrome: A Hybrid Type 2 Study
道德伤害综合症创新治疗的实施:2 型混合研究
- 批准号:
10752930 - 财政年份:2024
- 资助金额:
$ 24.98万 - 项目类别:
Addressing Gaps in Language Access Services through a Patient-Centered Decision-Support Tool
通过以患者为中心的决策支持工具解决语言获取服务中的差距
- 批准号:
10699030 - 财政年份:2023
- 资助金额:
$ 24.98万 - 项目类别:
CO-LEADER: Intervention to Improve Patient-Provider Communication and Medication Adherence among Patients with Systemic Lupus Erythematosus
共同领导者:改善系统性红斑狼疮患者的医患沟通和药物依从性的干预措施
- 批准号:
10772887 - 财政年份:2023
- 资助金额:
$ 24.98万 - 项目类别:
Crossroads: Using decision making strategies to develop high impact content for training in rigor and transparency.
十字路口:使用决策策略来开发高影响力的内容,以进行严格和透明的培训。
- 批准号:
10722510 - 财政年份:2023
- 资助金额:
$ 24.98万 - 项目类别:
The impact of Medicaid expansion on the rural mortality penalty in the United States
医疗补助扩大对美国农村死亡率的影响
- 批准号:
10726695 - 财政年份:2023
- 资助金额:
$ 24.98万 - 项目类别: