Linking metabolic activity with drug sensitivity using metabolic influence networks

使用代谢影响网络将代谢活动与药物敏感性联系起来

基本信息

项目摘要

Project Summary The impact of cellular metabolism on drug susceptibility has been observed in a wide range of organisms and cell types. However, how metabolism influences the activity of diverse classes of drugs has not been systematically explored. Linking metabolism and drug sensitivity has been a challenge due to both the impact of metabolism on numerous cellular processes, and the complexity of drug response. To address this, a combination of cutting-edge experimental and computational systems-biology tools will be applied to dissect the mechanisms by which cellular metabolism impacts the activity of drugs. The overall goal of my lab is to develop systems biology algorithms to reconstruct metabolic regulation and harness it for drug discovery. Here we propose to develop a new approach to link metabolism with various cellular process, called the ‘metabolic influence network’. We will use it to predict the impact of metabolic activity of a cell on drugs that inhibit diverse cellular processes. This framework will be applied to E. coli, yeast and human cell lines, allowing us to uncover conserved principles linking metabolism with potency of drugs that target cellular processes such as replication, transcription or signaling. This approach will be tested experimentally by altering cellular metabolic state and drug sensitivity with nutrient screens, enzyme inhibitors and drug combinations. Our systems approach will allow us to quantify the myriad effects of cell metabolism on drug action, including uptake, collateral interactions, and efflux. Ultimately, this research program can help precision medicine efforts by matching therapy based on cellular metabolic activity and the in vivo metabolic environment.
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sriram Chandrasekaran其他文献

Sriram Chandrasekaran的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sriram Chandrasekaran', 18)}}的其他基金

Linking metabolic activity with drug sensitivity using metabolic influence networks
使用代谢影响网络将代谢活动与药物敏感性联系起来
  • 批准号:
    10620835
  • 财政年份:
    2020
  • 资助金额:
    $ 36.64万
  • 项目类别:
Linking metabolic activity with drug sensitivity using metabolic influence networks
使用代谢影响网络将代谢活动与药物敏感性联系起来
  • 批准号:
    10025690
  • 财政年份:
    2020
  • 资助金额:
    $ 36.64万
  • 项目类别:
Linking metabolic activity with drug sensitivity using metabolic influence networks
使用代谢影响网络将代谢活动与药物敏感性联系起来
  • 批准号:
    10408114
  • 财政年份:
    2020
  • 资助金额:
    $ 36.64万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 36.64万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 36.64万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 36.64万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 36.64万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 36.64万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 36.64万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 36.64万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 36.64万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 36.64万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 36.64万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了