Linking metabolic activity with drug sensitivity using metabolic influence networks

使用代谢影响网络将代谢活动与药物敏感性联系起来

基本信息

项目摘要

Project Summary The impact of cellular metabolism on drug susceptibility has been observed in a wide range of organisms and cell types. However, how metabolism influences the activity of diverse classes of drugs has not been systematically explored. Linking metabolism and drug sensitivity has been a challenge due to both the impact of metabolism on numerous cellular processes, and the complexity of drug response. To address this, a combination of cutting-edge experimental and computational systems-biology tools will be applied to dissect the mechanisms by which cellular metabolism impacts the activity of drugs. The overall goal of my lab is to develop systems biology algorithms to reconstruct metabolic regulation and harness it for drug discovery. Here we propose to develop a new approach to link metabolism with various cellular process, called the ‘metabolic influence network’. We will use it to predict the impact of metabolic activity of a cell on drugs that inhibit diverse cellular processes. This framework will be applied to E. coli, yeast and human cell lines, allowing us to uncover conserved principles linking metabolism with potency of drugs that target cellular processes such as replication, transcription or signaling. This approach will be tested experimentally by altering cellular metabolic state and drug sensitivity with nutrient screens, enzyme inhibitors and drug combinations. Our systems approach will allow us to quantify the myriad effects of cell metabolism on drug action, including uptake, collateral interactions, and efflux. Ultimately, this research program can help precision medicine efforts by matching therapy based on cellular metabolic activity and the in vivo metabolic environment.
项目摘要 细胞代谢对药物敏感性的影响已在广泛的生物体中观察到, 细胞类型。然而,代谢如何影响不同类别药物的活性还没有被证实。 系统地探索。由于代谢和药物敏感性的影响, 以及药物反应的复杂性。为了解决这个问题,A 结合尖端的实验和计算系统-生物学工具将被应用于解剖 细胞代谢影响药物活性的机制。我实验室的总体目标是 开发系统生物学算法,以重建代谢调节并利用它进行药物发现。这里 我们建议开发一种新的方法,将代谢与各种细胞过程联系起来,称为“代谢 影响网络”。我们将用它来预测细胞的代谢活动对抑制多种药物的影响。 细胞过程该框架将应用于E.大肠杆菌,酵母和人类细胞系,使我们能够揭示 将代谢与靶向细胞过程的药物效力联系起来的保守原则, 复制、转录或信号传导。这种方法将通过改变细胞代谢来进行实验测试。 状态和药物敏感性与营养筛选,酶抑制剂和药物组合。我们的系统 这种方法将使我们能够量化细胞代谢对药物作用的无数影响,包括摄取, 侧支相互作用和外排。最终,这项研究计划可以通过以下方式帮助精准医学工作: 基于细胞代谢活性和体内代谢环境的匹配治疗。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Metabolic signatures of regulation by phosphorylation and acetylation.
  • DOI:
    10.1016/j.isci.2021.103730
  • 发表时间:
    2022-01-21
  • 期刊:
  • 影响因子:
    5.8
  • 作者:
    Smith K;Shen F;Lee HJ;Chandrasekaran S
  • 通讯作者:
    Chandrasekaran S
Next-Generation Genome-Scale Metabolic Modeling through Integration of Regulatory Mechanisms.
  • DOI:
    10.3390/metabo11090606
  • 发表时间:
    2021-09-07
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Chung CH;Lin DW;Eames A;Chandrasekaran S
  • 通讯作者:
    Chandrasekaran S
Single-cell RNA-sequencing identifies anti-cancer immune phenotypes in the early lung metastatic niche during breast cancer.
  • DOI:
    10.1007/s10585-022-10185-4
  • 发表时间:
    2022-12
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Orbach, Sophia M.;Brooks, Michael D.;Zhang, Yining;Campit, Scott E.;Bushnell, Grace G.;Decker, Joseph T.;Rebernick, Ryan J.;Chandrasekaran, Sriram;Wicha, Max S.;Jeruss, Jacqueline S.;Shea, Lonnie D.
  • 通讯作者:
    Shea, Lonnie D.
Acetyl-CoA metabolism drives epigenome change and contributes to carcinogenesis risk in fatty liver disease.
  • DOI:
    10.1186/s13073-022-01071-5
  • 发表时间:
    2022-06-23
  • 期刊:
  • 影响因子:
    12.3
  • 作者:
  • 通讯作者:
Protocol for CAROM: A machine learning tool to predict post-translational regulation from metabolic signatures.
  • DOI:
    10.1016/j.xpro.2022.101799
  • 发表时间:
    2022-12-16
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Smith, Kirk;Rhoads, Nicole;Chandrasekaran, Sriram
  • 通讯作者:
    Chandrasekaran, Sriram
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sriram Chandrasekaran其他文献

Sriram Chandrasekaran的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sriram Chandrasekaran', 18)}}的其他基金

Linking metabolic activity with drug sensitivity using metabolic influence networks
使用代谢影响网络将代谢活动与药物敏感性联系起来
  • 批准号:
    10025690
  • 财政年份:
    2020
  • 资助金额:
    $ 36.64万
  • 项目类别:
Linking metabolic activity with drug sensitivity using metabolic influence networks
使用代谢影响网络将代谢活动与药物敏感性联系起来
  • 批准号:
    10408114
  • 财政年份:
    2020
  • 资助金额:
    $ 36.64万
  • 项目类别:
Linking metabolic activity with drug sensitivity using metabolic influence networks
使用代谢影响网络将代谢活动与药物敏感性联系起来
  • 批准号:
    10221731
  • 财政年份:
    2020
  • 资助金额:
    $ 36.64万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 36.64万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 36.64万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 36.64万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 36.64万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 36.64万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 36.64万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 36.64万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 36.64万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 36.64万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 36.64万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了