Investigation of the role of the tectorial membrane in cochlear mechanics using computational models
使用计算模型研究盖膜在耳蜗力学中的作用
基本信息
- 批准号:10222648
- 负责人:
- 金额:$ 22.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:AdultAffectAmplifiersAnatomyAuditoryCharacteristicsCochleaCochlear ImplantsCollaborationsComputer ModelsCouplingDNA Sequence AlterationDataData AnalysesDevelopmentDiagnosisDiagnosticEarElementsExternal auditory canalExtracellular MatrixFailureFeedbackFrequenciesGenerationsHair CellsHearingHearing AidsHearing problemHumanInfantInvestigationKnockout MiceLabyrinthLinkLoudnessMeasurementMeasuresMechanicsMethodsModelingMolecular AbnormalityMorphologyMusMutant Strains MiceMutationOuter Hair CellsPathologicPharmaceutical PreparationsPhysiologicalPositioning AttributeProceduresPropertyProteinsPublishingReportingResearchRoleSensorineural Hearing LossStructureTestingTheoretical modelTransgenic MiceUniversitiesValidationWild Type MouseWorkbasecomputer frameworkdesignexperienceexperimental studyfunctional statusgenetic deafnesshearing impairmenthearing loss treatmentimprovedmechanical propertiesmouse modelmutant mouse modelnormal hearingnovelotoacoustic emissionototoxicityresponsesoundtectorial membranetoolvibrationvirtual laboratory
项目摘要
PROJECT SUMMARY
Physiological recordings and measurements of otoacoustic emissions (OAEs) in transgenic mice have helped
to characterize the effects of genetic mutations of the tectorial membrane (TM) on cochlear function. However,
current understanding of the role of the TM in mammalian hearing mechanics remains limited. This research
aims to elucidate the role of the TM in hearing mechanics using computational models of wild-type and
transgenic mice. More specifically, the proposed research focuses on the role of the TM in the active feedback
mechanism called cochlear amplifier that is necessary to achieve sharp tuning and high sensitivity in response to
low level sounds. Specific Aim 1 seeks to determine how genetic mutations of the TM alter mechanical coupling
of outer hair cells. Specific Aim 2 will establish how changes in the mechanical properties of the TM in transgenic
mice affect cochlear tuning and OAE-based measures of cochlear tuning. Specific Aim 3 will investigate the
underlying mechanism for the enhancement of some types of OAEs that has previously been reported in some
transgenic mice. In order to accomplish the objectives of this research, we will carefully model the effects of
the mutations on the structure, anatomy, and mechanical properties of the TM and will predict the effect of the
mutations on cochlear mechanics and OAEs by using a physiologically-based computational model of the murine
cochlea. Theoretical models will be validated using published experimental data and new experimental data that
will be provided by our collaborators. Furthermore, we will make theoretical predictions that will be experimentally
tested by our collaborators. The results of this research will demonstrate that our unique virtual laboratory for
hearing mechanics that includes details about cochlear micromechanics and TM mechanics constitutes a com-
prehensive framework that can explain invasive physiological data as well as noninvasive OAE measurements. If
successful, this research will help to better diagnose and treat hearing impairment and auditory disorders caused
by genetic abnormalities of the TM, since some mutations of the proteins expressed in the TM have been linked
to human hereditary deafness. The results of this research will also facilitate the design of hearing aids and
cochlear implants by helping to extract more information from noninvasive OAE measurements.
项目摘要
转基因小鼠的生理记录和耳声发射(OAE)测量有助于
目的:研究耳蜗盖膜(TM)基因突变对耳蜗功能的影响。然而,在这方面,
目前对TM在哺乳动物听力机制中的作用的理解仍然有限。本研究
旨在阐明TM在听力力学中的作用,使用野生型和
转基因小鼠。更具体地说,拟议的研究重点是TM在主动反馈中的作用
一种称为耳蜗放大器的机制,它是实现急剧调谐和高灵敏度所必需的,
低水平的声音。具体目标1旨在确定TM的基因突变如何改变机械耦合
外毛细胞具体目标2将确定转基因材料中TM机械性能的变化
小鼠影响耳蜗调谐和基于OAE的耳蜗调谐测量。具体目标3将调查
增强某些类型的耳声发射的潜在机制,以前曾在一些
转基因小鼠。为了实现本研究的目标,我们将仔细模拟
TM的结构、解剖学和机械性能的突变,并将预测TM的效果
通过使用基于生理学的小鼠计算模型,
耳蜗理论模型将使用已发表的实验数据和新的实验数据进行验证,
将由我们的合作者提供。此外,我们将进行理论预测,
由我们的合作者测试。这项研究的结果将证明我们独特的虚拟实验室,
听力力学包括耳蜗微观力学和TM力学的细节,构成了一个复合体,
可以解释侵入性生理数据以及非侵入性OAE测量的抽象框架。如果
成功,这项研究将有助于更好地诊断和治疗听力障碍和听觉障碍引起的
由于TM中表达的蛋白质的一些突变与TM的遗传异常有关,
人类遗传性耳聋这项研究的结果也将促进助听器的设计,
通过帮助从非侵入性耳声发射测量中提取更多信息来帮助人工耳蜗植入。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Julien Meaud其他文献
Julien Meaud的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Julien Meaud', 18)}}的其他基金
Investigation of the role of the tectorial membrane in cochlear mechanics using computational models
使用计算模型研究盖膜在耳蜗力学中的作用
- 批准号:
10466828 - 财政年份:2018
- 资助金额:
$ 22.41万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 22.41万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 22.41万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 22.41万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 22.41万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 22.41万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 22.41万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 22.41万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 22.41万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 22.41万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 22.41万 - 项目类别:
Grant-in-Aid for Early-Career Scientists