CRCNS: Collaborative Research: State-Dependent Control for Brain Modulation
CRCNS:合作研究:大脑调节的状态相关控制
基本信息
- 批准号:10222669
- 负责人:
- 金额:$ 33.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-08-15 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:Action PotentialsAlgorithmsAurasBackBiophysicsBrainComputer ModelsDataElectric StimulationEpilepsyFeedbackGoalsHealthIntensive CareMembraneMethodsMigraineModelingNational Institute of Mental HealthNeuronsNormal RangeOxygenPathologicPhysiologicalPotassiumPreventionPropertyRecording of previous eventsResearchSeizuresSpike PotentialStrokeSubarachnoid HemorrhageSystemTissuesTraumatic Brain Injurybasebiophysical modelexperimental studyextracellularimprovedin vivoin vivo Modelmind controlneuronal circuitrynovel strategiesoptical sensorpreventspatiotemporalspreading depression
项目摘要
Abstract
There is a several decade history demonstrating that electrical polarization of neurons can modulate
neuronal firing, and that such polarization can suppress (or excite) spiking activity and seizures. We have
demonstrated seizure control using both open- and closed-loop stimulation strategies (J Neurophysiol,
76:4202-4205,1996; J Neurosci, 21:590-600, 2001). With past NIMH and CRCNS support (R01MH50006,
1R01EB014641) – we discovered a unification in the computational biophysics of spikes, seizures, and
spreading depression (J Neurosci, 34:11733-11743, 2014). These findings demonstrate that the repertoire
of the dynamics of the neuronal membrane encompasses a broad range of dynamics ranging from normal
to pathological, and that seizures and spreading depression are manifestations of the inherent properties of
those membranes. Recently we achieved a major experimental verification of key predictions from the
unification predictions in in vivo epilepsy. Most recently, we achieved the experimental goal of the most
recent CRCNS project, “Model-Based Control of Spreading Depression”, by demonstrating that neuronal
polarization can suppress (or enhance), block, or prevent spreading depression, the physiological
underpinning of migraine auras. Remarkably, this suppression requires the opposite polarity as that
required to suppress spikes and seizures, and is fully consistent with the computational biophysical models
of spreading depression. Further surprising findings from these experiments was that suppression of
spreading depression does not appear to generate seizures, and vice versa, that when the brain is in
seizure activity suppression does not generate spreading depression. The implications of the above is that
in controlling brain dynamics from different states of the brain, that there can be state dependent control
which is qualitatively very different from that required in other states. Furthermore, the control algorithms
required to maintain a given steady state (e.g. normal spiking) may differ from that required to guide a
system from a pathological state back into a steady state. We propose the hypothesis that there is an
entirely new framework for feedback control of neuronal circuitry – State Dependent Control. This is a
model-based framework, wherein neuronal systems are sensed through electrical or optical sensors, and
the data assimilated into a biophysical computational model of the possible states. Feedback control is then
applied based upon the state, and the trajectory of the system through state space is continually observed.
Working out state dependent control for brain activity has health implications for not only epilepsy and
migraine, but more broadly in intensive care settings because of the harmful effects of spreading depression
waves in traumatic brain injury, stroke, and subarachnoid hemorrhage.
抽象的
几十年的历史表明神经元的电极化可以调节
神经元放电,并且这种极化可以抑制(或刺激)尖峰活动和癫痫发作。我们有
证明使用开环和闭环刺激策略可以控制癫痫发作(J Neurophysicalol,
76:4202-4205,1996;神经科学杂志,21:590-600,2001)。凭借过去的 NIMH 和 CRCNS 支持(R01MH50006,
1R01EB014641) – 我们发现了尖峰、癫痫和癫痫发作的计算生物物理学的统一
抑郁症的蔓延(J Neurosci,34:11733-11743,2014)。这些发现表明曲目
神经元膜动力学的研究涵盖了广泛的动力学范围,从正常的
病理性的,癫痫发作和蔓延的抑郁症是其固有特性的表现
那些膜。最近,我们对关键预测进行了重大实验验证
体内癫痫的统一预测。最近,我们实现了最多的实验目标
最近的 CRCNS 项目“基于模型的抑郁症扩散控制”通过证明神经元
极化可以抑制(或增强)、阻止或防止抑郁症的蔓延,这是一种生理现象
偏头痛先兆的基础。值得注意的是,这种抑制需要相反的极性
抑制尖峰和癫痫发作所需的,并且与计算生物物理模型完全一致
抑郁症的蔓延。这些实验的进一步令人惊讶的发现是抑制
抑郁症的蔓延似乎不会引起癫痫发作,反之亦然,当大脑处于
抑制癫痫发作不会产生抑郁症的蔓延。上述的含义是
在从大脑的不同状态控制大脑动力学时,可以存在状态依赖控制
这在质量上与其他州的要求有很大不同。此外,控制算法
维持给定稳定状态(例如正常尖峰)所需的可能与引导稳定状态所需的不同
系统从病理状态回到稳态。我们提出这样的假设:存在一个
神经回路反馈控制的全新框架——状态相关控制。这是一个
基于模型的框架,其中神经元系统通过电或光学传感器进行感测,以及
数据被吸收到可能状态的生物物理计算模型中。那么反馈控制就是
基于状态应用,并且持续观察系统在状态空间中的轨迹。
研究出大脑活动的状态依赖性控制不仅对癫痫和
偏头痛,但更广泛地在重症监护环境中,因为传播抑郁症的有害影响
创伤性脑损伤、中风和蛛网膜下腔出血中的波。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)
Role of multiple-scale modeling of epilepsy in seizure forecasting.
- DOI:10.1097/wnp.0000000000000149
- 发表时间:2015-06
- 期刊:
- 影响因子:0
- 作者:Kuhlmann L;Grayden DB;Wendling F;Schiff SJ
- 通讯作者:Schiff SJ
Towards dynamical network biomarkers in neuromodulation of episodic migraine.
- DOI:10.2478/s13380-013-0127-0
- 发表时间:2013-09
- 期刊:
- 影响因子:2.1
- 作者:Dahlem MA;Rode S;May A;Fujiwara N;Hirata Y;Aihara K;Kurths J
- 通讯作者:Kurths J
The Role of Cell Volume in the Dynamics of Seizure, Spreading Depression, and Anoxic Depolarization.
- DOI:10.1371/journal.pcbi.1004414
- 发表时间:2015-08
- 期刊:
- 影响因子:4.3
- 作者:Ullah G;Wei Y;Dahlem MA;Wechselberger M;Schiff SJ
- 通讯作者:Schiff SJ
Observability of Neuronal Network Motifs.
- DOI:10.1109/ciss.2012.6310923
- 发表时间:2012-03
- 期刊:
- 影响因子:0
- 作者:Whalen AJ;Brennan SN;Sauer TD;Schiff SJ
- 通讯作者:Schiff SJ
Oxygen and seizure dynamics: II. Computational modeling.
- DOI:10.1152/jn.00541.2013
- 发表时间:2014-07
- 期刊:
- 影响因子:2.5
- 作者:Yina Wei;G. Ullah;J. Ingram;S. Schiff
- 通讯作者:Yina Wei;G. Ullah;J. Ingram;S. Schiff
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
BRUCE J GLUCKMAN其他文献
BRUCE J GLUCKMAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('BRUCE J GLUCKMAN', 18)}}的其他基金
Cross-Disciplinary Neural Engineering (CDNE) Training Program
跨学科神经工程(CDNE)培训计划
- 批准号:
10437727 - 财政年份:2021
- 资助金额:
$ 33.91万 - 项目类别:
Cross-Disciplinary Neural Engineering (CDNE) Training Program
跨学科神经工程(CDNE)培训计划
- 批准号:
10205622 - 财政年份:2021
- 资助金额:
$ 33.91万 - 项目类别:
Cross-Disciplinary Neural Engineering (CDNE) Training Program
跨学科神经工程(CDNE)培训计划
- 批准号:
10617317 - 财政年份:2021
- 资助金额:
$ 33.91万 - 项目类别:
7th International Workshop on Seizure Prediction (IWSP7)
第七届癫痫预测国际研讨会(IWSP7)
- 批准号:
8838440 - 财政年份:2014
- 资助金额:
$ 33.91万 - 项目类别:
6th International Workshop on Seizure Prediction
第六届癫痫发作预测国际研讨会
- 批准号:
8597679 - 财政年份:2013
- 资助金额:
$ 33.91万 - 项目类别:
CRCNS: Collaborative Research: Model-Based Control of Spreading Depression
CRCNS:合作研究:基于模型的抑郁症蔓延控制
- 批准号:
8258411 - 财政年份:2011
- 资助金额:
$ 33.91万 - 项目类别:
CRCNS: Collaborative Research: Model-Based Control of Spreading Depression
CRCNS:合作研究:基于模型的抑郁症蔓延控制
- 批准号:
8529207 - 财政年份:2011
- 资助金额:
$ 33.91万 - 项目类别:
CRCNS: Collaborative Research: Model-Based Control of Spreading Depression
CRCNS:合作研究:基于模型的抑郁症蔓延控制
- 批准号:
8320219 - 财政年份:2011
- 资助金额:
$ 33.91万 - 项目类别:
Perturbative Seizure Prediction and Detection of a Seizure Permissive State
扰动癫痫发作预测和癫痫允许状态检测
- 批准号:
8059573 - 财政年份:2009
- 资助金额:
$ 33.91万 - 项目类别:
Perturbative Seizure Prediction and Detection of a Seizure Permissive State
扰动癫痫发作预测和癫痫允许状态检测
- 批准号:
7736366 - 财政年份:2009
- 资助金额:
$ 33.91万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 33.91万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 33.91万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 33.91万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 33.91万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 33.91万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 33.91万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 33.91万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 33.91万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 33.91万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 33.91万 - 项目类别:
Continuing Grant














{{item.name}}会员




