CRCNS: Collaborative Research: State-Dependent Control for Brain Modulation
CRCNS:合作研究:大脑调节的状态相关控制
基本信息
- 批准号:10222669
- 负责人:
- 金额:$ 33.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-08-15 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:Action PotentialsAlgorithmsAurasBackBiophysicsBrainComputer ModelsDataElectric StimulationEpilepsyFeedbackGoalsHealthIntensive CareMembraneMethodsMigraineModelingNational Institute of Mental HealthNeuronsNormal RangeOxygenPathologicPhysiologicalPotassiumPreventionPropertyRecording of previous eventsResearchSeizuresSpike PotentialStrokeSubarachnoid HemorrhageSystemTissuesTraumatic Brain Injurybasebiophysical modelexperimental studyextracellularimprovedin vivoin vivo Modelmind controlneuronal circuitrynovel strategiesoptical sensorpreventspatiotemporalspreading depression
项目摘要
Abstract
There is a several decade history demonstrating that electrical polarization of neurons can modulate
neuronal firing, and that such polarization can suppress (or excite) spiking activity and seizures. We have
demonstrated seizure control using both open- and closed-loop stimulation strategies (J Neurophysiol,
76:4202-4205,1996; J Neurosci, 21:590-600, 2001). With past NIMH and CRCNS support (R01MH50006,
1R01EB014641) – we discovered a unification in the computational biophysics of spikes, seizures, and
spreading depression (J Neurosci, 34:11733-11743, 2014). These findings demonstrate that the repertoire
of the dynamics of the neuronal membrane encompasses a broad range of dynamics ranging from normal
to pathological, and that seizures and spreading depression are manifestations of the inherent properties of
those membranes. Recently we achieved a major experimental verification of key predictions from the
unification predictions in in vivo epilepsy. Most recently, we achieved the experimental goal of the most
recent CRCNS project, “Model-Based Control of Spreading Depression”, by demonstrating that neuronal
polarization can suppress (or enhance), block, or prevent spreading depression, the physiological
underpinning of migraine auras. Remarkably, this suppression requires the opposite polarity as that
required to suppress spikes and seizures, and is fully consistent with the computational biophysical models
of spreading depression. Further surprising findings from these experiments was that suppression of
spreading depression does not appear to generate seizures, and vice versa, that when the brain is in
seizure activity suppression does not generate spreading depression. The implications of the above is that
in controlling brain dynamics from different states of the brain, that there can be state dependent control
which is qualitatively very different from that required in other states. Furthermore, the control algorithms
required to maintain a given steady state (e.g. normal spiking) may differ from that required to guide a
system from a pathological state back into a steady state. We propose the hypothesis that there is an
entirely new framework for feedback control of neuronal circuitry – State Dependent Control. This is a
model-based framework, wherein neuronal systems are sensed through electrical or optical sensors, and
the data assimilated into a biophysical computational model of the possible states. Feedback control is then
applied based upon the state, and the trajectory of the system through state space is continually observed.
Working out state dependent control for brain activity has health implications for not only epilepsy and
migraine, but more broadly in intensive care settings because of the harmful effects of spreading depression
waves in traumatic brain injury, stroke, and subarachnoid hemorrhage.
抽象的
有几个十年的历史表明神经元的电化可以调节
神经元发射,这种极化可以抑制(或激发)尖峰活动和癫痫发作。我们有
使用开环刺激策略(J Neurophysiol,
76:4202-4205,1996; J Neurosci,21:590-600,2001)。在过去的NIMH和CRCN支持的情况下(R01MH50006,
1R01EB014641) - 我们在峰值,癫痫发作和癫痫发作的计算生物物理学中发现了一个统一
扩散抑郁(J Neurosci,34:11733-11743,2014)。这些发现表明曲目
神经元膜的动力学包括广泛的动力学范围从正常
病理学,癫痫发作和扩散抑郁是继承特性的表现
这些机制。最近,我们从
体内癫痫中的统一预测。最近,我们实现了最大的实验目标
最近的CRCN项目“基于模型的扩散抑郁症的控制”,证明神经元
极化可以抑制(或增强),阻塞或防止抑郁症,生理
偏头痛的基础。值得注意的是,这种抑制需要相反的极性
抑制尖峰和癫痫发作所需,并且与计算生物物理模型完全一致
扩散抑郁症。这些实验的进一步令人惊讶的发现是抑制
散布抑郁似乎并没有产生癫痫发作,反之亦然,当大脑进入时
癫痫活性抑制不会产生扩散的抑郁症。以上的含义是
在控制大脑不同状态的大脑动力学时,可以存在依赖状态的控制
与其他州所需的质量截然不同。此外,控制算法
保持给定稳态(例如正常峰值)所需的要求与指导A所需的不同之处
从病理状态恢复到稳定状态的系统。我们提出了一个假设,有一个
助理神经元电路反馈控制的新框架 - 状态依赖控制。这是一个
基于模型的框架,其中神经元系统通过电气或光学传感器感测
数据被吸收到可能状态的生物物理计算模型中。反馈控制是
基于状态应用,并连续观察到通过状态空间的系统轨迹。
锻炼国家依赖对大脑活动的控制不仅对癫痫和
偏头痛,但在重症监护环境中更广泛,因为抑郁症的有害影响
创伤性脑损伤,中风和蛛网膜下腔出血中的波。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)
Role of multiple-scale modeling of epilepsy in seizure forecasting.
- DOI:10.1097/wnp.0000000000000149
- 发表时间:2015-06
- 期刊:
- 影响因子:0
- 作者:Kuhlmann L;Grayden DB;Wendling F;Schiff SJ
- 通讯作者:Schiff SJ
Towards dynamical network biomarkers in neuromodulation of episodic migraine.
- DOI:10.2478/s13380-013-0127-0
- 发表时间:2013-09
- 期刊:
- 影响因子:2.1
- 作者:Dahlem MA;Rode S;May A;Fujiwara N;Hirata Y;Aihara K;Kurths J
- 通讯作者:Kurths J
The Role of Cell Volume in the Dynamics of Seizure, Spreading Depression, and Anoxic Depolarization.
- DOI:10.1371/journal.pcbi.1004414
- 发表时间:2015-08
- 期刊:
- 影响因子:4.3
- 作者:Ullah G;Wei Y;Dahlem MA;Wechselberger M;Schiff SJ
- 通讯作者:Schiff SJ
Oxygen and seizure dynamics: II. Computational modeling.
- DOI:10.1152/jn.00541.2013
- 发表时间:2014-07
- 期刊:
- 影响因子:2.5
- 作者:Yina Wei;G. Ullah;J. Ingram;S. Schiff
- 通讯作者:Yina Wei;G. Ullah;J. Ingram;S. Schiff
Observability of Neuronal Network Motifs.
- DOI:10.1109/ciss.2012.6310923
- 发表时间:2012-03
- 期刊:
- 影响因子:0
- 作者:Whalen AJ;Brennan SN;Sauer TD;Schiff SJ
- 通讯作者:Schiff SJ
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
BRUCE J GLUCKMAN其他文献
BRUCE J GLUCKMAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('BRUCE J GLUCKMAN', 18)}}的其他基金
Cross-Disciplinary Neural Engineering (CDNE) Training Program
跨学科神经工程(CDNE)培训计划
- 批准号:
10437727 - 财政年份:2021
- 资助金额:
$ 33.91万 - 项目类别:
Cross-Disciplinary Neural Engineering (CDNE) Training Program
跨学科神经工程(CDNE)培训计划
- 批准号:
10205622 - 财政年份:2021
- 资助金额:
$ 33.91万 - 项目类别:
Cross-Disciplinary Neural Engineering (CDNE) Training Program
跨学科神经工程(CDNE)培训计划
- 批准号:
10617317 - 财政年份:2021
- 资助金额:
$ 33.91万 - 项目类别:
7th International Workshop on Seizure Prediction (IWSP7)
第七届癫痫预测国际研讨会(IWSP7)
- 批准号:
8838440 - 财政年份:2014
- 资助金额:
$ 33.91万 - 项目类别:
6th International Workshop on Seizure Prediction
第六届癫痫发作预测国际研讨会
- 批准号:
8597679 - 财政年份:2013
- 资助金额:
$ 33.91万 - 项目类别:
CRCNS: Collaborative Research: Model-Based Control of Spreading Depression
CRCNS:合作研究:基于模型的抑郁症蔓延控制
- 批准号:
8258411 - 财政年份:2011
- 资助金额:
$ 33.91万 - 项目类别:
CRCNS: Collaborative Research: Model-Based Control of Spreading Depression
CRCNS:合作研究:基于模型的抑郁症蔓延控制
- 批准号:
8529207 - 财政年份:2011
- 资助金额:
$ 33.91万 - 项目类别:
CRCNS: Collaborative Research: Model-Based Control of Spreading Depression
CRCNS:合作研究:基于模型的抑郁症蔓延控制
- 批准号:
8320219 - 财政年份:2011
- 资助金额:
$ 33.91万 - 项目类别:
Perturbative Seizure Prediction and Detection of a Seizure Permissive State
扰动癫痫发作预测和癫痫允许状态检测
- 批准号:
8059573 - 财政年份:2009
- 资助金额:
$ 33.91万 - 项目类别:
Perturbative Seizure Prediction and Detection of a Seizure Permissive State
扰动癫痫发作预测和癫痫允许状态检测
- 批准号:
7736366 - 财政年份:2009
- 资助金额:
$ 33.91万 - 项目类别:
相似国自然基金
无线供能边缘网络中基于信息年龄的能量与数据协同调度算法研究
- 批准号:62372118
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
NURBS参数化的自交理论与算法研究
- 批准号:12301490
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于先进算法和行为分析的江南传统村落微气候的评价方法、影响机理及优化策略研究
- 批准号:52378011
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
分组密码算法后门的研究
- 批准号:62302293
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
时序深度可加网络的算法与学习理论研究
- 批准号:62306338
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Automated Seizure Detection for Home Seizure Monitoring with Epilog Sensors
使用 Epilog 传感器进行自动癫痫发作检测,用于家庭癫痫发作监测
- 批准号:
10200346 - 财政年份:2021
- 资助金额:
$ 33.91万 - 项目类别:
Automated Seizure Detection for Home Seizure Monitoring with Epilog Sensors
使用 Epilog 传感器进行自动癫痫发作检测,用于家庭癫痫发作监测
- 批准号:
10402377 - 财政年份:2021
- 资助金额:
$ 33.91万 - 项目类别:
Automated Seizure Detection for Home Seizure Monitoring with Epilog Sensors
使用 Epilog 传感器进行自动癫痫发作检测,用于家庭癫痫发作监测
- 批准号:
10710337 - 财政年份:2021
- 资助金额:
$ 33.91万 - 项目类别:
Drug Free Nerve Block Device for the Relief of Pain and Symptoms in Migraines and other Headaches
用于缓解偏头痛和其他头痛的疼痛和症状的无药物神经阻滞装置
- 批准号:
10493404 - 财政年份:2020
- 资助金额:
$ 33.91万 - 项目类别:
Drug Free Nerve Block Device for the Relief of Pain and Symptoms in Migraines and other Headaches
用于缓解偏头痛和其他头痛的疼痛和症状的无药物神经阻滞装置
- 批准号:
10386456 - 财政年份:2020
- 资助金额:
$ 33.91万 - 项目类别: