Instrumenting blood platelets: nanosensors for cumulative shear and compression measurement

血小板仪器:用于累积剪切和压缩测量的纳米传感器

基本信息

  • 批准号:
    10224326
  • 负责人:
  • 金额:
    $ 23.31万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

Here we develop novel in situ and circulating nanoscale sensing technologies heretofore unavailable to directly measure the cumulative fluid-structure forces experienced by blood platelets during circulation. Elevated shear is responsible for the myriad of adverse events in implantable cardiovascular devices including thrombosis and bleeding. We propose to utilize mechanosensors made using DNA nanotechnology to quantify physical force perturbations experienced by circulating cells as they traverse high shear flow paths. By creating and characterizing this new assay tools system, this work has potential to improve and enhance the safety and efficacy of cardiovascular therapeutic devices. This resubmission has been updated based on helpful feedback. At the nanoscale, pushing, pulling, and shearing forces drive biochemical beneficial processes in development and remodeling, but also pathological processes in disease progression. In blood platelets, shear activation as experienced in a ventricular assist device or in stenotic atherosclerotic artery leads to an increased likelihood of thrombosis, but without a tool to measure the shear dose, i.e. intensity x time, that a given circulation will impart, our capability to develop therapeutic interventions is limited. Nanoscale sensor modules would allow us to ask not only how platelet loads affects thrombotic potential, but also to predict how implantable devices in conjunction with specific vasculature will affect potential for stroke or other thromboembolic events, and ultimately inform future designs for enhanced hemocompatibility. In a high-risk, high-reward collaboration involving bioengineers and physicians, we propose to apply the DNA origami approach to create two varieties of fluorescent and tunable bistable nanosensors: one that is sensitive to shear loading (surface parallel) and another that is sensitive to compressive loading (surface perpendicular). We will decorate micron-scale polymer microbeads as well as human blood platelets with these sensors, and using microfluidic platforms, we will tune the mechanics of these sensor-on-particle systems, including their linkages, to maximize their sensitivity to both shear and impact. The molecular precision and programmability of DNA-based mechanosensors can enable highly parallel measurements with tunable sensitivity to forces as small at tens of femtonewtons. This interdisciplinary field has historically been driven by the development of technologies for precise application and measurement of cellular and molecular forces; each new tool has enabled vast new lines of inquiry, and with this proposed work, DNA- based nanotechnologies can lead to another transformation in the field of cardiovascular mechanobiology. Success in this endeavor will result in the creation of novel tools for measuring the cumulative shear and compressive loading that circulating cells experience as they move through high shear microenvironments. Insights from such measurements will enable the development of improved implantable devices, pharmacologic agents to mitigate shear effects and new lines of inquiry for improving our understanding of the role of shear and compressive loading in platelet activation.
在这里,我们开发了新的原位和循环纳米级传感技术,迄今无法直接 测量血小板在循环过程中所经受的累积流体-结构力。高架剪 是导致植入式心血管装置中无数不良事件的原因,包括血栓形成, 流血了我们建议利用DNA纳米技术制成的机械传感器来量化物理力 当循环细胞穿过高剪切流动路径时所经历的扰动。通过创建和 表征这种新的分析工具系统,这项工作有可能改善和提高安全性, 心血管治疗设备的功效。已根据有用的反馈更新了此重新提交。 在纳米尺度上,推力、拉力和剪切力驱动着生物化学的有益过程 和重塑,以及疾病进展中的病理过程。在血小板中,剪切活化作为 在心室辅助装置中或在狭窄的动脉粥样硬化动脉中的经历导致增加的可能性 血栓形成,但没有工具来测量给定循环将给予的剪切剂量,即强度×时间, 我们开发治疗干预措施的能力有限。纳米级传感器模块可以让我们问 不仅可以预测血小板负荷如何影响血栓形成的可能性, 与特定血管系统的关系将影响中风或其他血栓栓塞事件的可能性,并最终告知 用于增强血液相容性的未来设计。在一个涉及生物工程师的高风险高回报的合作中, 和医生,我们建议应用DNA折纸的方法来创建两个品种的荧光和可调 纳米传感器:一种对剪切载荷敏感(表面平行),另一种对剪切载荷敏感。 压缩载荷(表面垂直)。我们将装饰微米级聚合物微珠以及 人类血小板与这些传感器,并使用微流体平台,我们将调整这些机制, 粒子传感器系统,包括其连接,以最大限度地提高其对剪切和冲击的灵敏度。 基于DNA的机械传感器的分子精度和可编程性可以实现高度并行 测量具有可调谐的灵敏度,以在几十毫微微牛顿的小的力。这一跨学科领域 在历史上由用于精确应用和测量蜂窝通信的技术的发展驱动。 和分子力;每一个新的工具都使大量的新的调查路线成为可能,随着这项拟议中的工作,DNA- 基于纳米技术可以导致心血管机械生物学领域的另一次变革。 这一奋进的成功将导致创造新的工具来测量累积剪切, 循环细胞在高剪切微环境中移动时所经历的压缩负荷。 从这些测量中获得的见解将有助于开发改进的植入式设备,药理学, 减轻剪切效应的试剂和新的调查路线,以提高我们对剪切作用的理解, 血小板活化中的压缩负荷。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The effects of overhang placement and multivalency on cell labeling by DNA origami.
  • DOI:
    10.1039/d0nr09212f
  • 发表时间:
    2021-04-14
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Liu Y ;Wijesekara P ;Kumar S ;Wang W ;Ren X ;Taylor RE
  • 通讯作者:
    Taylor RE
Accessing and Assessing the Cell-Surface Glycocalyx Using DNA Origami.
  • DOI:
    10.1021/acs.nanolett.1c01236
  • 发表时间:
    2021-06-09
  • 期刊:
  • 影响因子:
    10.8
  • 作者:
    Wijesekara P;Liu Y;Wang W;Johnston EK;Sullivan MLG;Taylor RE;Ren X
  • 通讯作者:
    Ren X
Emerging applications at the interface of DNA nanotechnology and cellular membranes: Perspectives from biology, engineering, and physics.
  • DOI:
    10.1063/5.0027022
  • 发表时间:
    2020-12
  • 期刊:
  • 影响因子:
    6
  • 作者:
    Wang W;Arias DS;Deserno M;Ren X;Taylor RE
  • 通讯作者:
    Taylor RE
DNA Origami-Platelet Adducts: Nanoconstruct Binding without Platelet Activation.
DNA折纸骨骼加合物:纳米结构结合而无需血小板激活。
  • DOI:
    10.1021/acs.bioconjchem.2c00197
  • 发表时间:
    2022-07-20
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Roka-Moiia, Yana;Walawalkar, Vismaya;Liu, Ying;Italiano, Joseph E.;Slepian, Marvin J.;Taylor, Rebecca E.
  • 通讯作者:
    Taylor, Rebecca E.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rebecca E. Taylor其他文献

Mechanical stimulation of cerebral organoids toward understanding human neural response
  • DOI:
    10.1016/j.bpj.2021.11.324
  • 发表时间:
    2022-02-11
  • 期刊:
  • 影响因子:
  • 作者:
    Susana M. Beltran;Chowdari Kodavali;Justin Bobo;Rebecca E. Taylor;Lincoln Edwards;Philip R. LeDuc;Pascal O. Zinn
  • 通讯作者:
    Pascal O. Zinn
Tools for Studying Biomechanical Interactions in Cells
研究细胞生物力学相互作用的工具
  • DOI:
    10.1007/978-1-4419-8083-0_11
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rebecca E. Taylor;V. Mukundan;B. Pruitt
  • 通讯作者:
    B. Pruitt
Vitro: Designing a Voice Assistant for the Scientific Lab Workplace
Vitro:为科学实验室工作场所设计语音助手
Immunoproteomics: Methods and Protocols
免疫蛋白质组学:方法和方案
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. S. Arias;Rebecca E. Taylor
  • 通讯作者:
    Rebecca E. Taylor
Capacitance measurements for assessing DNA origami nanostructures
用于评估 DNA 折纸纳米结构的电容测量
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    V. Walawalkar;Md. Sakibur Rahman Sajal;Y. Gilpin;M. Dandin;Rebecca E. Taylor
  • 通讯作者:
    Rebecca E. Taylor

Rebecca E. Taylor的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rebecca E. Taylor', 18)}}的其他基金

Instrumenting blood platelets: nanosensors for cumulative shear and compression measurement
血小板仪器:用于累积剪切和压缩测量的纳米传感器
  • 批准号:
    10056867
  • 财政年份:
    2020
  • 资助金额:
    $ 23.31万
  • 项目类别:
Biomechanical analysis of sarcomeric mutations that cause early-onset cardiomyopa
导致早发性心肌病的肌节突变的生物力学分析
  • 批准号:
    9052814
  • 财政年份:
    2014
  • 资助金额:
    $ 23.31万
  • 项目类别:
Biomechanical analysis of sarcomeric mutations that cause early-onset cardiomyopa
导致早发性心肌病的肌节突变的生物力学分析
  • 批准号:
    8717465
  • 财政年份:
    2014
  • 资助金额:
    $ 23.31万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 23.31万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 23.31万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 23.31万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 23.31万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 23.31万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 23.31万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 23.31万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 23.31万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 23.31万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 23.31万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了