Multiplexed Imaging in the Near Infrared with Indium Phosphide Quantum Shells
使用磷化铟量子壳进行近红外多重成像
基本信息
- 批准号:10224242
- 负责人:
- 金额:$ 46.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-15 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAnimal ModelAnimalsAreaArsenicBenchmarkingBindingBiodistributionBiologicalBiological AssayBiological MarkersBiological ProcessBiomedical ResearchBlood CirculationBlood Circulation TimeBostonCadmiumCell surfaceChemistryColorCommunitiesContrast MediaDevelopmentDevelopment PlansDiagnosticDyesEffectivenessElementsEnsureEquipmentEventFluorescenceFormulationFutureGeometryGoldHealthHeavy MetalsHemoglobinImageImage EnhancementIn VitroInvestmentsLeadLightLipidsMalignant NeoplasmsMercuryMethodsMicellesMicroscopyMolecular ProbesMonitorNonionizing RadiationOperative Surgical ProceduresOpticsPenetrationPerformancePhotonsPilot ProjectsPropertyProteinsProtocols documentationQuantum DotsResolutionResourcesSemiconductorsSkinStructureTeacher Professional DevelopmentTechniquesTestingTimeTissue ModelTissuesToxic effectTumor MarkersUniversitiesVisualizationWaterabsorptionanimal imagingbasebioimagingbiomaterial compatibilitycancer imagingcell typeclinical optical imagingcontrast imagingcostcytotoxicitydesignexperienceexperimental studyfaculty mentorfluorescence imagingfluorophoreimaging agentimaging modalityimaging probeimaging studyimprovedin vivoin vivo Modelin vivo imagingindium phosphideinnovationmalignant breast neoplasmmillimetermolecular imagingmolecular phenotypemouse modelmultiphoton imagingmultiphoton microscopymultiplexed imagingnanomaterialsnanoparticlenovelparticlepre-clinicalquantumsensorsoft tissuesuccesstargeted imagingtechnology developmenttissue phantomtooltumortumor growthtumor xenograft
项目摘要
Project Summary/Abstract
Fluorescence has significant potential for biomedical imaging applications because of the relatively low cost of
imaging equipment, the nominal toxicity of non-ionizing radiation (i.e., light), the potential for molecular imaging
using target-specific contrast agents, and the prospect of multiplexed imaging using discretely colored
fluorophores. Molecules common in biological tissues including lipids, water, and hemoglobin scatter and absorb
light, rendering tissue opaque to visible wavelengths, but longer, near infrared (NIR) wavelengths penetrate
deeper, giving us an optical window into the body. To see inside a tissue, we require bright, photostable, highly
absorbing, NIR fluorophores. Despite exceptional results in vitro, we can improve on the in vivo performance of
organic dyes, fluorescent proteins, and traditional semiconductor quantum dots (QDs), which are typically dim,
toxic, not red enough, or all of the above. We have created a material that literally flips a quantum dot inside out
to make a quantum shell (QS) comprised of non-toxic elements (In, P, Se, Zn, S) that is tunable from 500 – 900
nm. Because InP absorbs more efficiently than CdSe, these materials are brighter than previous materials with
a smaller size, while emitting in the NIR and reducing toxicity. We propose a technology development plan that
would enable us to refine the structural and optical properties of these particles to generate a brightness-matched
palette of fluorophores to enable multiplexing in deep tissue. We will deploy these particles in widefield imaging
and multiphoton microscopy (MPM) experiments to first objectively quantify and then demonstrate the optical
superiority of these probes. After evaluating the in vitro and in vivo biocompatibility of various formulations of
water-soluble QSs, we will use targeted and untargeted QSs together for dual probe imaging of cell surface
biomarkers to selectively highlight a xenograft tumor. In addition to widefield imaging, we will objectively evaluate
the MPM contrast of the QSs. The exceptionally high absorptivity of the particles ensures high two- and three-
photon action cross-sections. We will quantitatively compare the brightness and tissue penetration depth of the
InP QSs against other red and NIR fluorophores. Synthetic iterations to the particles will use the unique particle
geometry to generate QSs with varying emission colors, but the same brightness. We will compare zwitterionic
coatings to our benchmark lipid-PEG coating to try to enhance imaging contrast through longer circulation time
and more efficient targeting. The success of this project will yield a rainbow of non-toxic, NIR fluorophores that
can be used collectively could transform preclinical molecular imaging.
项目总结/摘要
荧光对于生物医学成像应用具有显著的潜力,这是因为荧光的相对低的成本。
成像设备,非电离辐射的标称毒性(即,光),分子成像的潜力
使用靶特异性造影剂,以及使用离散彩色成像的多路成像的前景
荧光团。生物组织中常见的分子,包括脂质、水和血红蛋白,
光,使组织对可见波长不透明,但更长的近红外(NIR)波长穿透
更深,给我们一个观察身体的光学窗口。要看到组织内部,我们需要明亮,耐光,高度
吸收的近红外荧光团。尽管在体外获得了优异的结果,但我们可以改善
有机染料、荧光蛋白和传统的半导体量子点(QD),它们通常是暗淡的,
有毒,不够红,或者以上都有。我们创造了一种材料,它可以将量子点从里到外翻转,
- 制造由无毒元素(In、P、Se、Zn、S)组成的量子壳(QS),其可从500 - 900
nm.由于InP比CdSe更有效地吸收,因此这些材料比先前的材料更亮,
更小的尺寸,同时在近红外发射并降低毒性。我们提出了一项技术发展计划,
将使我们能够细化这些粒子的结构和光学特性,
荧光团的调色板,以实现在深层组织中的多路复用。我们将在宽视场成像中部署这些粒子
和多光子显微镜(MPM)实验,首先客观地量化,然后证明光学
这些探测器的优势。在评估了各种制剂的体外和体内生物相容性后,
水溶性量子点,我们将使用靶向和非靶向量子点一起用于细胞表面的双探针成像
生物标志物以选择性地突出异种移植肿瘤。除了宽视野成像,我们将客观地评估
QSs的MPM对比度。颗粒的极高吸收率确保了高的二次和三次-
光子作用截面我们将定量比较的亮度和组织穿透深度的
InP QSs对其他红色和NIR荧光团。粒子的合成迭代将使用唯一粒子
几何形状以生成具有不同发射颜色但具有相同亮度的QS。我们将比较两性离子
涂层与我们的基准脂质-PEG涂层相比,试图通过更长的循环时间来增强成像对比度
更有效的瞄准。该项目的成功将产生一种无毒的近红外荧光团,
可以共同使用,可以改变临床前分子成像。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Allison Marie Dennis其他文献
Allison Marie Dennis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Allison Marie Dennis', 18)}}的其他基金
In Vivo Mapping of Enzyme Activity using SWIR-emitting, Self-illuminating Quantum Dot Sensors
使用短波红外发射、自发光量子点传感器绘制酶活性体内图谱
- 批准号:
10762565 - 财政年份:2022
- 资助金额:
$ 46.2万 - 项目类别:
Biodegradable and Biocompatible Semiconductor Nanoparticles for Deep Tissue Imaging
用于深层组织成像的可生物降解和生物相容性半导体纳米颗粒
- 批准号:
9979273 - 财政年份:2020
- 资助金额:
$ 46.2万 - 项目类别:
Multiplexed Imaging in the Near Infrared with Indium Phosphide Quantum Shells
使用磷化铟量子壳进行近红外多重成像
- 批准号:
10682976 - 财政年份:2019
- 资助金额:
$ 46.2万 - 项目类别:
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 46.2万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 46.2万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 46.2万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 46.2万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 46.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 46.2万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 46.2万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 46.2万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 46.2万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 46.2万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




