Biodegradable and Biocompatible Semiconductor Nanoparticles for Deep Tissue Imaging
用于深层组织成像的可生物降解和生物相容性半导体纳米颗粒
基本信息
- 批准号:9979273
- 负责人:
- 金额:$ 24.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-01 至 2022-03-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlloysAnemiaAnimalsArsenicBile fluidBiliaryBiodegradationBiodistributionBiologicalBiomedical ResearchClinicalColorComputer ModelsContrast MediaCopperCoupledCrystallizationDevelopmentDiagnosticDiagnostic ImagingDiseaseElementsEncapsulatedEquipmentEvolutionExcretory functionExhibitsFDA approvedFluorescenceGoalsGoldHealthHeavy MetalsHemoglobinHistologyHumanImageIn VitroInbred BALB C MiceIronKidneyLeadLightLipidsLiverMagnetic Resonance ImagingMeasuresMercuryMetabolic PathwayMethodsMicellesModalityModelingMolecularMonitorNonionizing RadiationOperative Surgical ProceduresOpticsOrgan WeightOxidesPathway interactionsPatientsPenetrationPropertyProtocols documentationQuantum DotsResolutionSemiconductorsSerumSkinSpleenStructureSulfidesSulfurSurfaceTestingTimeTissue imagingTissuesToxic effectWaterWeightZincabsorptionbasebioaccumulationbioimagingbiomaterial compatibilityclinical applicationclinical developmentclinical imagingclinical optical imagingclinical riskclinical translationcostcytotoxicitydensitydesigndetectorexperiencefluorescence imagingfluorophoreimaging agentimprovedin vivoin vivo evaluationin vivo imaginginnovationiron oxideiron oxide nanoparticlemolecular imagingmultiplexed imagingnanoGoldnanomaterialsnanoparticlenovelparticlephotoacoustic imagingpre-clinicalpreventquantumsensorside effecttargeted treatmenttechnology developmenttheoriestooltumorzinc sulfide
项目摘要
Project Summary/Abstract
Fluorescence has significant potential for biomedical imaging applications because of the relatively low cost of
imaging equipment, the nominal toxicity of non-ionizing radiation (i.e., light), the potential for molecular imaging
using target-specific contrast agents, and the prospect of multiplexed imaging using discretely colored
fluorophores. Molecules common in biological tissues including lipids, water, and hemoglobin scatter and absorb
light, rendering tissue opaque to visible wavelengths, but longer, near infrared (NIR) wavelengths penetrate
deeper, giving us optical windows into the body. The first, second, and third NIR optical windows (NIR-I, II, and
III) each have advantages ranging from use with accessible and economical Si detectors (NIR-I) to a reduction
in scattering, and thus a marked improvement in resolution, in the NIR-II and III. To see inside a tissue, we require
bright, photostable, highly absorbing, NIR fluorophores. In addition, the regular clinical use of any contrast agent
requires that it is biocompatible and removed from the body following its use. We propose a new materials
development effort to synthesize biocompatible and biodegradable semiconductor QDs that can be tuned for
imaging in the NIR-I, II, or III. We propose a novel, optically active semiconductor nanoparticle that fully
degrades in vivo for clinical molecular imaging. Inorganic contrast agents like semiconductor quantum dots
(QDs) have been the focus of extensive biomedical research, but hold little promise for clinical translation
because the materials comprise toxic constituents. Even inert, seemingly biocompatible inorganic materials like
gold nanoparticles carry the clinical risk of accumulating indefinitely in tissues like the liver. This is in stark
contrast to the only inorganic nanoparticle that has been FDA-approved to date: iron oxide nanoparticles (IONs)
for MRI contrast and the treatment of anemia. The absence of heavy metals in IONs avoids toxicity, while
degradation and bile excretion circumvent the potentially severe kidney strain experienced by patients receiving
molecular contrast agents. This material profile inspires our innovative approach to reinventing QDs for clinical
optical imaging. We hypothesize that heavy metal-free nanoparticles comprising only bioessential elements will
be degraded and excreted just like iron oxide. The choice of a material with a small bandgap (0.6 eV) indicates
that the absorption and emission will be size-tunable through NIR-I, II, and III wavelength regimes, enabling
paradigm shifting levels of light penetration through tissues and clarity in fluorescence imaging. We will use
computational approaches like density functional theory (DFT) modeling of various crystal structures to predict
and optimize nanomaterial optical properties to rationally design semiconductor nanoparticles for clinical
applications. Through this Exploratory Technology Development R21, we will synthesize and characterize novel
semiconductor nanoparticles that address current limitations in function, toxicity, and bioaccumulation through
their photoluminescence in the NIR-I, II, and III regimes, composition of bioessential elements, and capacity for
in vivo degradation and excretion.
项目摘要/摘要
由于相对较低的成本,荧光在生物医学成像应用中具有巨大的潜力
成像设备,非电离辐射(即光)的标称毒性,分子成像的潜力
使用目标特定的造影剂,以及使用离散颜色的多路成像的前景
荧光团。生物组织中常见的分子,包括脂类、水和血红蛋白,可以分散和吸收。
光,使组织不透明到可见光波长,但更长的近红外(NIR)波长可以穿透
更深的地方,给了我们进入身体的光学窗口。第一、第二和第三近红外光学窗口(NIR-I、II和
三)每一种都有各种优点,从使用方便和经济的硅探测器(NIR-I)到减少
在散射方面,因此在分辨率上有了显著的提高,在NIR-II和III中。要看到组织内部,我们需要
明亮,光稳定,高吸收,近红外荧光团。此外,任何造影剂的临床常规使用
要求它是生物相容的,并在使用后从体内移除。我们提出了一种新材料
合成生物相容和可生物降解的可调半导体量子点的开发工作
在NIR-I、II或III中成像。我们提出了一种新型的、光学活性的半导体纳米粒子,它完全
体内降解,用于临床分子成像。半导体量子点等无机造影剂
(量子点)一直是广泛的生物医学研究的焦点,但在临床翻译方面前景渺茫
因为这些材料含有有毒成分。即使是惰性的、看似生物相容的无机材料,如
金纳米颗粒具有在肝脏等组织中无限期积累的临床风险。这是赤裸裸的
与迄今为止唯一获得FDA批准的无机纳米颗粒形成对比的是:氧化铁纳米颗粒(离子)
用于MRI对比剂和贫血的治疗。离子中不含重金属可避免毒性,而
降解和胆汁排泄绕过了接受移植的患者可能经历的严重的肾脏压力
分子造影剂。这份材料简介启发了我们为临床重新发明量子点的创新方法。
光学成像。我们假设,只包含生物必需元素的无重金属纳米颗粒将
就像氧化铁一样被降解和排泄。选择带隙较小(0.6 eV)的材料表明
吸收和发射将通过NIR-I、II和III波长制度进行大小可调,从而能够
改变光透过组织的水平和荧光成像的清晰度。我们将使用
各种晶体结构的计算方法,如密度泛函理论(DFT)建模,以预测
优化纳米材料的光学性质,合理设计用于临床的半导体纳米颗粒
申请。通过这次探索性的技术开发R21,我们将合成和表征小说
半导体纳米颗粒,通过以下途径解决目前在功能、毒性和生物积累方面的限制
它们在NIR-I,II和III区的光致发光,生物必需元素的组成,以及
体内降解和排泄。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Allison Marie Dennis其他文献
Allison Marie Dennis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Allison Marie Dennis', 18)}}的其他基金
In Vivo Mapping of Enzyme Activity using SWIR-emitting, Self-illuminating Quantum Dot Sensors
使用短波红外发射、自发光量子点传感器绘制酶活性体内图谱
- 批准号:
10762565 - 财政年份:2022
- 资助金额:
$ 24.75万 - 项目类别:
Multiplexed Imaging in the Near Infrared with Indium Phosphide Quantum Shells
使用磷化铟量子壳进行近红外多重成像
- 批准号:
10682976 - 财政年份:2019
- 资助金额:
$ 24.75万 - 项目类别:
Multiplexed Imaging in the Near Infrared with Indium Phosphide Quantum Shells
使用磷化铟量子壳进行近红外多重成像
- 批准号:
10224242 - 财政年份:2019
- 资助金额:
$ 24.75万 - 项目类别:
相似海外基金
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
$ 24.75万 - 项目类别:
Studentship
CAREER: First-principles Predictive Understanding of Chemical Order in Complex Concentrated Alloys: Structures, Dynamics, and Defect Characteristics
职业:复杂浓缩合金中化学顺序的第一原理预测性理解:结构、动力学和缺陷特征
- 批准号:
2415119 - 财政年份:2024
- 资助金额:
$ 24.75万 - 项目类别:
Continuing Grant
CAREER: Emergence of in-liquid structures in metallic alloys by nucleation and growth
职业:通过成核和生长在金属合金中出现液态结构
- 批准号:
2333630 - 财政年份:2024
- 资助金额:
$ 24.75万 - 项目类别:
Continuing Grant
CAREER: Understanding Interface Controlled Mechanisms of Recrystallization in Microstructurally Complex Mg Alloys
职业:了解微观结构复杂镁合金中界面控制的再结晶机制
- 批准号:
2339387 - 财政年份:2024
- 资助金额:
$ 24.75万 - 项目类别:
Continuing Grant
CAS: Designing Copper-based Multi-metallic Single-atom Alloys for Cross Coupling Reactions through Combined Surface Science and Catalytic Investigations
CAS:通过结合表面科学和催化研究设计用于交叉偶联反应的铜基多金属单原子合金
- 批准号:
2400227 - 财政年份:2024
- 资助金额:
$ 24.75万 - 项目类别:
Continuing Grant
Collaborative Research: Dynamics of Short Range Order in Multi-Principal Element Alloys
合作研究:多主元合金中的短程有序动力学
- 批准号:
2348956 - 财政年份:2024
- 资助金额:
$ 24.75万 - 项目类别:
Standard Grant
Towards use-as-manufactured titanium alloys for additive manufacturing
致力于将钛合金用于增材制造
- 批准号:
LP210301261 - 财政年份:2024
- 资助金额:
$ 24.75万 - 项目类别:
Linkage Projects
Innovative Zn alloys with essential mechanical and biofunctional properties
具有基本机械和生物功能特性的创新锌合金
- 批准号:
DP240101131 - 财政年份:2024
- 资助金额:
$ 24.75万 - 项目类别:
Discovery Projects
Next generation titanium alloys for additive manufacturing
用于增材制造的下一代钛合金
- 批准号:
FT230100683 - 财政年份:2024
- 资助金额:
$ 24.75万 - 项目类别:
ARC Future Fellowships
Impact of impurity elements on the corrosion performance of high strength 6xxx aluminium alloys
杂质元素对高强6xxx铝合金腐蚀性能的影响
- 批准号:
2906344 - 财政年份:2024
- 资助金额:
$ 24.75万 - 项目类别:
Studentship














{{item.name}}会员




