Project 1: Using CyTOF to identify phenotypic and functional biomarkers predicting time to HIV rebound after treatment interruption

项目 1:使用 CyTOF 识别表型和功能生物标志物,预测治疗中断后 HIV 反弹的时间

基本信息

  • 批准号:
    10223995
  • 负责人:
  • 金额:
    $ 32.02万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-08-08 至 2023-07-31
  • 项目状态:
    已结题

项目摘要

Project Summary A variety of therapeutic strategies are being pursued to try to eradicate or constrain the latent HIV reservoir such that high-level viral rebound does not occur when antiretroviral therapy is discontinued. Testing the efficacy of these strategies currently requires analytical treatment interruption (ATI), during which a suppressed patient is taken off ART and carefully monitored for viral rebound. Having reliable biomarkers that could accurately predict the effectiveness of the therapeutic approach as assessed by time to rebound after treatment interruption would greatly accelerate the pace of HIV cure research, reduce the number of costly and logistically challenging ATI trials, and provide greater protection to patients participating in these trials. From a translatable perspective, these biomarkers should be readily detectable in blood and not require tissue biopsies. Although viral reservoir size is a predictor of time-to-rebound post-ATI, it is not a robust biomarker. Currently, there are no known immunological biomarkers at the time of ATI that can predict the duration of viral control. In this project, biomarkers predicting shorter or longer times to rebound will be identified in well-suppressed HIV-infected patients undergoing treatment interruption. Specifically, mass cytometry, or cytometry by time-of-flight (CyTOF), will be used to identify phenotypic and functional biomarkers predicting time to viral rebound. Blood samples obtained at the time of ATI, from patients who were treated during chronic as well as acute infection, will be analyzed by CyTOF deep-phenotyping for immunological signatures of CD4+ T cells, CD8+ T cells, B cells, monocytes, neutrophils, conventional DCs, plasmacytoid DCs, and NK cells that predict time-to-rebound. Seven panels of ~40 parameters each will be used. These signatures will include not only cellular phenotype but also the functional activity of these cells in response to ex vivo stimulations including treatment with latency reversal agents (LRAs). Correlations will be analyzed by the Citrus algorithm that identifies features of cellular subsets that significantly associate with disease outcome, in this case time-to-rebound. Finally, productively infected cells in these patients at the time of viral rebound will be characterized to help chart the latent reactivatable reservoir in these patients. The aims in this project will take advantage of the powers of high-dimensional CyTOF phenotyping and its analysis tools to identify novel biomarkers predicting time to viral rebound after treatment interruption. Such biomarkers might ultimately prove helpful in the evaluation of various cure therapies.
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nadia R Roan其他文献

Transient Anti-Interferon Auto Antibodies in the Airway Are Associated with Recovery in Mild COVID-19
  • DOI:
    10.1182/blood-2023-190358
  • 发表时间:
    2023-11-02
  • 期刊:
  • 影响因子:
  • 作者:
    Benjamin R Babcock;Astrid Kosters;Nadia R Roan;Sulggi Lee;Eliver E.B. Ghosn
  • 通讯作者:
    Eliver E.B. Ghosn

Nadia R Roan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nadia R Roan', 18)}}的其他基金

Reservoir features associated with time-to-rebound during analytical treatment interruption
与分析处理中断期间的反弹时间相关的储层特征
  • 批准号:
    10459934
  • 财政年份:
    2022
  • 资助金额:
    $ 32.02万
  • 项目类别:
Characterizing ART-free NK cell-mediated control of HIV infection in people living with HIV
描述 HIV 感染者中无 ART 的 NK 细胞介导的 HIV 感染控制
  • 批准号:
    10535192
  • 财政年份:
    2022
  • 资助金额:
    $ 32.02万
  • 项目类别:
Characterizing ART-free NK cell-mediated control of HIV infection in people living with HIV
描述 HIV 感染者中无 ART 的 NK 细胞介导的 HIV 感染控制
  • 批准号:
    10671559
  • 财政年份:
    2022
  • 资助金额:
    $ 32.02万
  • 项目类别:
Reservoir features associated with time-to-rebound during analytical treatment interruption
与分析处理中断期间的反弹时间相关的储层特征
  • 批准号:
    10614027
  • 财政年份:
    2022
  • 资助金额:
    $ 32.02万
  • 项目类别:
Phenotypic and mechanistic analysis of the in vivo HIV latent reservoir by single-cell technologies
通过单细胞技术对体内 HIV 潜伏病毒库进行表型和机制分析
  • 批准号:
    10357547
  • 财政年份:
    2019
  • 资助金额:
    $ 32.02万
  • 项目类别:
Phenotypic and mechanistic analysis of the in vivo HIV latent reservoir by single-cell technologies
通过单细胞技术对体内 HIV 潜伏病毒库进行表型和机制分析
  • 批准号:
    10448398
  • 财政年份:
    2019
  • 资助金额:
    $ 32.02万
  • 项目类别:
Phenotypic and mechanistic analysis of the in vivo HIV latent reservoir by single-cell technologies
通过单细胞技术对体内 HIV 潜伏病毒库进行表型和机制分析
  • 批准号:
    10360854
  • 财政年份:
    2019
  • 资助金额:
    $ 32.02万
  • 项目类别:
Exploiting the Host-HIV Interface To Identify Biomarkers Predicting Time to Viral Rebound after Treatment Interruption
利用宿主-HIV 界面识别生物标志物,预测治疗中断后病毒反弹的时间
  • 批准号:
    10223991
  • 财政年份:
    2017
  • 资助金额:
    $ 32.02万
  • 项目类别:
Characterization of Exosomes From Semen of Uninfected and HIV-Infected Men
未感染和 HIV 感染男性精液中外泌体的表征
  • 批准号:
    9228315
  • 财政年份:
    2016
  • 资助金额:
    $ 32.02万
  • 项目类别:
Characterization of Exosomes From Semen of Uninfected and HIV-Infected Men
未感染和 HIV 感染男性精液中外泌体的表征
  • 批准号:
    9062790
  • 财政年份:
    2016
  • 资助金额:
    $ 32.02万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 32.02万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 32.02万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 32.02万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 32.02万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 32.02万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 32.02万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 32.02万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 32.02万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 32.02万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 32.02万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了