A mechanistic model of bacteriophage T7 infection, replication, and evolution
噬菌体 T7 感染、复制和进化的机制模型
基本信息
- 批准号:10224216
- 负责人:
- 金额:$ 31.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-08-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectArchitectureAttenuatedAttenuated Live Virus VaccineAttenuated VaccinesBacteriophage T7BacteriophagesBiochemicalBiological ModelsBiologyBiotechnologyCapsidCellsComplexComputer ModelsCytolysisDancingDataDiseaseEngineeringEquilibriumEvolutionFoundationsFutureGene ExpressionGene Expression RegulationGene OrderGenesGeneticGenetic TranscriptionGenomeGenome engineeringGoalsImmunityIn VitroInfectionLife Cycle StagesMeasurementMedicineModelingModificationMolecularMultiple Bacterial Drug ResistanceOral Poliovirus VaccineOutcomePatientsPatternPhenotypePreventionProcessProductionProkaryotic CellsProteinsPublishingRecoveryRegulator GenesResearchResistanceResolutionSystemTestingTranscriptTransfer RNATransgenesTranslation InitiationTranslationsVaccine DesignVariantViralViral GenomeVirulenceVirusVirus DiseasesWorkattenuationcombatdesignds-DNAengineering designexperiencefitnessgene therapygenetic manipulationgenome-widein silicoinsightmulti-drug resistant pathogennovelpredictive modelingpreventrepairedsimulationtherapy designtoolvaccine developmentviral fitness
项目摘要
Summary
Genetically modified viruses have important applications in the prevention and treatment of disease, such as
viruses used as live vaccines and for phage therapy. In these applications, we need to modify viruses to have
specific phenotypes (e.g., attenuated fitness or the ability to kill multidrug-resistant pathogens) while also pre-
venting rapid adaptation that may compromise these functions. In practice, viruses for these applications are
often created haphazardly, via trial-and-error. A critical barrier to further progress in this field is the ability to
engineer viral genomes rationally, while being able to predict the phenotypic consequences of the engineering
as well as the likelihood of further adaptation or evolutionary reversion of the engineered viruses.
This project will develop a detailed mechanistic model of a viral study system that can be used to study genome
engineering, targeted viral attenuation, and evolutionary recovery. The virus is a dsDNA bacteriophage (T7) that
is safe and can be easily manipulated and engineered. With its extensive background of genetic, biochemical
and evolutionary studies, T7 offers the best empirical and theoretical foundation of all viruses for addressing this
problem. Our approach consists of three Aims that collectively combine computational modeling of the viral life
cycle with genome engineering, molecular studies of viral infections, fitness measurements, and evolution of
modified genomes.
In Aim 1, we will assess the principles of gene regulation in T7. We hypothesize that complex, dynamic expres-
sion patterns do not require explicit gene regulatory networks, and that instead gene regulation in T7 is the result
of a finely tuned balance between transcript synthesis and degradation. We will test this hypothesis both in three-
gene model systems and in simulations of the entire T7 life cycle, validated against high-throughput measure-
ments of T7 transcript and protein abundances.
In Aim 2, we will extend our simulator into a predictive fitness model. We hypothesize that bacteriophage fitness
can be predicted from the rate of production and cellular abundance of bacteriophage genomes, transcripts, and
proteins. We will extend the simulator with modules for genome replication, capsid assembly, and lysis. All sim-
ulations will be calibrated using experimental measurements of phage fitness for a panel of different engineered
and evolved T7 genomes.
Aim 3 will apply the insights generated from Aims 1 and 2 to larger-scale genome disruptions and phage evolu-
tion. We hypothesize that the T7 genome architecture imposes quantifiable constraints on the ways in which the
phage can evolve and/or respond to genetic manipulation. We will engineer T7 variants with inserted transgenes,
rearranged gene order, or more fragmented gene expression modules, and we will assess to what extent we
can predict the phenotypic and evolutionary consequences of these modifications in silico.
总结
转基因病毒在预防和治疗疾病方面具有重要应用,例如
用作活疫苗和用于噬菌体治疗的病毒。在这些应用程序中,我们需要修改病毒,
特定表型(例如,减弱的适应性或杀死多药耐药病原体的能力),同时也预-
排气快速适应可能会损害这些功能。实际上,这些应用程序的病毒
经常是偶然的,通过试错。在这一领域取得进一步进展的一个关键障碍是,
合理地设计病毒基因组,同时能够预测工程的表型后果
以及工程化病毒进一步适应或进化逆转的可能性。
本计画将发展一个详细的病毒研究系统的机械模型,以用于基因组的研究
工程化、靶向病毒减毒和进化恢复。该病毒是一种双链DNA噬菌体(T7),
是安全的,并且可以轻松操作和设计。凭借其广泛的遗传、生化背景
和进化研究,T7为解决这一问题提供了所有病毒中最好的经验和理论基础。
问题.我们的方法由三个目标组成,它们共同联合收割机结合了病毒生命的计算建模
循环与基因组工程,病毒感染的分子研究,健身测量,和进化
修改基因组。
在目标1中,我们将评估T7中基因调控的原则。我们假设复杂的,动态的表达-
锡永模式不需要明确的基因调控网络,而T7中的基因调控是结果。
在转录物合成和降解之间的一种微调平衡。我们将在三个方面来检验这个假设-
基因模型系统和整个T7生命周期的模拟,对高通量测量进行验证-
T7转录本和蛋白质丰度的部分。
在目标2中,我们将把我们的模拟器扩展成一个预测适应度模型。我们假设噬菌体适应性
可以从噬菌体基因组、转录物和
proteins.我们将用基因组复制、衣壳组装和裂解模块扩展模拟器。所有模拟-
将使用噬菌体适合性的实验测量来校准这些结果,以用于一组不同的工程化的噬菌体。
并进化出了T7基因组
目标3将把目标1和2产生的见解应用于更大规模的基因组破坏和噬菌体进化。
是的。我们假设,T7基因组结构对基因表达的方式施加了可量化的限制。
噬菌体可以进化和/或响应遗传操作。我们将在T7变异体中插入转基因,
重排的基因顺序,或更多片段化的基因表达模块,我们将评估我们在多大程度上
可以通过计算机模拟预测这些修饰的表型和进化结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeffrey Evan Barrick其他文献
Jeffrey Evan Barrick的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeffrey Evan Barrick', 18)}}的其他基金
Identifying Mutations that Promote Microbial Evolvability
识别促进微生物进化的突变
- 批准号:
8213191 - 财政年份:2009
- 资助金额:
$ 31.75万 - 项目类别:
A mechanistic model of bacteriophage T7 infection, replication, and evolution
噬菌体 T7 感染、复制和进化的机制模型
- 批准号:
10624298 - 财政年份:2009
- 资助金额:
$ 31.75万 - 项目类别:
Identifying Mutations that Promote Microbial Evolvability
识别促进微生物进化的突变
- 批准号:
8217096 - 财政年份:2009
- 资助金额:
$ 31.75万 - 项目类别:
Identifying Mutations that Promote Microbial Evolvability
识别促进微生物进化的突变
- 批准号:
7644063 - 财政年份:2009
- 资助金额:
$ 31.75万 - 项目类别:
Identifying Mutations that Promote Microbial Evolvability
识别促进微生物进化的突变
- 批准号:
8413011 - 财政年份:2009
- 资助金额:
$ 31.75万 - 项目类别:
A mechanistic model of bacteriophage T7 infection, replication, and evolution
噬菌体 T7 感染、复制和进化的机制模型
- 批准号:
10406315 - 财政年份:2009
- 资助金额:
$ 31.75万 - 项目类别:
相似海外基金
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 31.75万 - 项目类别:
Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 31.75万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 31.75万 - 项目类别:
Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 31.75万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 31.75万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 31.75万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 31.75万 - 项目类别:
Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 31.75万 - 项目类别:
Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
- 批准号:
23K00129 - 财政年份:2023
- 资助金额:
$ 31.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
- 批准号:
2883985 - 财政年份:2023
- 资助金额:
$ 31.75万 - 项目类别:
Studentship