Advanced Development and Utilization of Assembled Aging Trajectory Files from Multiple Datasets

来自多个数据集的组装老化轨迹文件的高级开发和利用

基本信息

项目摘要

PROJECT SUMMARY This goal of this project is to create a unique and comprehensive research repository of aging trajectory da- tasets, related resources, and analytic methods that can be used to answer new and important questions in aging and related sciences. Specifically, by harmonizing and merging multiple data sets this project will gener- ate the data infrastructure needed to understand change over time in care settings, geriatric syndromes, physi- cal functioning, and shared risk factors at multiple levels (patient, provider, community, healthcare system, and society) and across multiple domains (biological, behavioral, sociocultural, and physical/built environments) including chronic conditions and history of acute illness such as COVID-19, exposure to air pollution, neighbor- hood socioeconomic, and health care system factors (Aim 1). Analytic strategies will be developed for user- defined cohorts and their propensity score-matched controls, e.g., older adults who were living with chronic conditions including Alzheimer's disease and related dementias (ADRD), diabetes, heart failure, end-stage re- nal disease, metastatic cancer, and HIV. State-of-the-art analytic methods are used to identify patterns of ag- ing trajectories (care setting, geriatric syndromes, physical functioning) experienced by older adults during the final years of life and their association with shared risk factors and distal outcomes (Aim 2). From the assem- bled trajectory file in Aim 1, cohorts are derived by aligning an originating index time such as age cutoff point and time at diagnosis (e.g., ADRD, stroke, chronic kidney disease). Both a model-based approach and ma- chine learning algorithms are then used to discover multilevel and potentially interactive predictors of trajecto- ries (e.g., rapid functional decline in independent living beneficiaries) and specific outcomes (e.g., respiratory ventilator usage among Medicare beneficiaries diagnosed with COVID-19) (Aim 3). The unique resources are then shared to disseminate resources including datasets, documentation, source code, and methodology (Aim 4). At the end of this project, the research infrastructure to investigate the relationship between shared risk factors and aging trajectories will be ready to use and replicate, giving investigators unprecedented ability to solve new challenges in aging science. This will allow researchers to understand the underlying processes and systems associated with reversible periods of disability across care settings, and interventions that may be used to support recovery of function and reduction of geriatric syndromes including cognitive decline, for the purpose of reducing burdensome care transitions, and maintenance of functional independence. This project will also create the resources and methods needed to evaluate the impact of innovations and interventions im- plemented at the patient, provider, community, healthcare system, and society/policy levels to improve care quality and outcomes for older adults.
项目总结 这个项目的目标是创建一个独特的、全面的老化轨迹数据研究库。 Taset、相关资源和分析方法,可用于回答 老龄化及相关科学。具体地说,通过协调和合并多个数据集,该项目将产生- 获取所需的数据基础架构,以了解护理环境、老年综合征、身体状况等随时间的变化 CAL功能和多个级别的共享风险因素(患者、提供者、社区、医疗保健系统和 社会)和跨多个领域(生物、行为、社会文化和物理/建筑环境) 包括慢性病和急性病病史,如新冠肺炎,暴露在空气污染中,邻里- 胡德社会经济和卫生保健系统因素(目标1)。将为用户制定分析策略- 确定的队列及其倾向得分匹配的对照组,例如,患有慢性阻塞性肺病的老年人 病情包括阿尔茨海默病和相关痴呆(ADRD)、糖尿病、心力衰竭、终末期再痴呆 鼻咽癌、转移性癌症和艾滋病毒。最先进的分析方法被用来识别农业的模式。 老年人经历的ING轨迹(护理环境、老年综合征、身体功能) 生命的最后几年及其与共同风险因素和远期结局的关联(目标2)。来自Assem的- 出血轨迹文件在AIM 1中,通过对齐起始索引时间(例如年龄截止点)来导出队列 和确诊时的时间(例如,ADRD、中风、慢性肾脏疾病)。既是基于模型的方法,也是主要的 然后,使用中国学习算法来发现轨迹的多水平和潜在的交互预测器- RIES(例如,独立活着受益人的功能迅速下降)和具体结果(例如,呼吸系统 新冠肺炎确诊的医疗保险受益人中的呼吸机使用情况)(目标3)。独特的资源是 然后共享以传播资源,包括数据集、文档、源代码和方法(AIM 4)。在这个项目的最后,研究基础设施,以调查风险分担之间的关系 因素和老化轨迹将准备好使用和复制,使调查人员具有前所未有的能力 解决老龄化科学面临的新挑战。这将使研究人员了解潜在的过程和 与护理环境中的可逆性伤残期相关的系统,以及可能 用于支持功能恢复和减少老年综合征,包括认知能力下降,用于 目的是减少繁重的护理过渡,并保持功能独立性。这个项目 还将创造必要的资源和方法,以评估创新和干预措施的影响- 在患者、提供者、社区、医疗保健系统和社会/政策层面实施,以改善护理 老年人的质量和结果。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Olga F. Jarrín Montaner其他文献

Olga F. Jarrín Montaner的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Olga F. Jarrín Montaner', 18)}}的其他基金

Administrative Supplement to Support Collaborations to Improve AI/ML-Readiness
支持协作以提高 AI/ML 准备度的行政补充
  • 批准号:
    10412233
  • 财政年份:
    2021
  • 资助金额:
    $ 103.05万
  • 项目类别:
Advanced Development and Utilization of Assembled Aging Trajectory Files from Multiple Datasets
来自多个数据集的组装老化轨迹文件的高级开发和利用
  • 批准号:
    10882701
  • 财政年份:
    2021
  • 资助金额:
    $ 103.05万
  • 项目类别:
R01 Upstream Approaches to Improve Late Life Care for People Living with Dementia
R01 改善痴呆症患者晚年护理的上游方法
  • 批准号:
    10256742
  • 财政年份:
    2020
  • 资助金额:
    $ 103.05万
  • 项目类别:
R01 Upstream Approaches to Improve Late Life Care for People Living with Dementia
R01 改善痴呆症患者晚年护理的上游方法
  • 批准号:
    10407074
  • 财政年份:
    2020
  • 资助金额:
    $ 103.05万
  • 项目类别:
R01 Upstream Approaches to Improve Late Life Care for People Living with Dementia
R01 改善痴呆症患者晚年护理的上游方法
  • 批准号:
    10063298
  • 财政年份:
    2020
  • 资助金额:
    $ 103.05万
  • 项目类别:
R01 Upstream Approaches to Improve Late Life Care for People Living with Dementia
R01 改善痴呆症患者晚年护理的上游方法
  • 批准号:
    10662576
  • 财政年份:
    2020
  • 资助金额:
    $ 103.05万
  • 项目类别:
Comparative effectiveness of home care environments for diverse elders' outcomes
家庭护理环境对不同老年人结果的比较有效性
  • 批准号:
    9275942
  • 财政年份:
    2016
  • 资助金额:
    $ 103.05万
  • 项目类别:
Comparative effectiveness of home care environments for diverse elders' outcomes
家庭护理环境对不同老年人结果的比较有效性
  • 批准号:
    9390036
  • 财政年份:
    2016
  • 资助金额:
    $ 103.05万
  • 项目类别:
Comparative effectiveness of home care environments for diverse elders' outcomes
家庭护理环境对不同老年人结果的比较有效性
  • 批准号:
    8598636
  • 财政年份:
    2013
  • 资助金额:
    $ 103.05万
  • 项目类别:
Comparative effectiveness of home care environments for diverse elders' outcomes
家庭护理环境对不同老年人结果的比较有效性
  • 批准号:
    8704158
  • 财政年份:
    2013
  • 资助金额:
    $ 103.05万
  • 项目类别:

相似海外基金

Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
  • 批准号:
    MR/X02329X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 103.05万
  • 项目类别:
    Fellowship
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
  • 批准号:
    MR/Y009568/1
  • 财政年份:
    2024
  • 资助金额:
    $ 103.05万
  • 项目类别:
    Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
  • 批准号:
    10090332
  • 财政年份:
    2024
  • 资助金额:
    $ 103.05万
  • 项目类别:
    Collaborative R&D
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
  • 批准号:
    MR/X021882/1
  • 财政年份:
    2024
  • 资助金额:
    $ 103.05万
  • 项目类别:
    Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
  • 批准号:
    2312694
  • 财政年份:
    2024
  • 资助金额:
    $ 103.05万
  • 项目类别:
    Standard Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
  • 批准号:
    EP/Y003527/1
  • 财政年份:
    2024
  • 资助金额:
    $ 103.05万
  • 项目类别:
    Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
  • 批准号:
    EP/Y030338/1
  • 财政年份:
    2024
  • 资助金额:
    $ 103.05万
  • 项目类别:
    Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
  • 批准号:
    MR/X029557/1
  • 财政年份:
    2024
  • 资助金额:
    $ 103.05万
  • 项目类别:
    Research Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
  • 批准号:
    24K19395
  • 财政年份:
    2024
  • 资助金额:
    $ 103.05万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Collaborative Research: Changes and Impact of Right Ventricle Viscoelasticity Under Acute Stress and Chronic Pulmonary Hypertension
合作研究:急性应激和慢性肺动脉高压下右心室粘弹性的变化和影响
  • 批准号:
    2244994
  • 财政年份:
    2023
  • 资助金额:
    $ 103.05万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了