Identification of genetic and molecular pathways in congenital rare disorders affecting the brain and muscle
鉴定影响大脑和肌肉的先天性罕见疾病的遗传和分子途径
基本信息
- 批准号:10226162
- 负责人:
- 金额:$ 32.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-15 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:AffectBiochemicalBiopsyBrainChildhoodCodeCognitive deficitsCohort StudiesComplexConsumptionDNA Sequence AlterationDNA sequencingDataDevelopmentDevelopmental Delay DisordersDiseaseDystroglycanEmbryoExtracellular MatrixEyeFamilyFutureGenesGeneticGenetic HeterogeneityGenetic ModelsGenetic studyGenomeGenotypeGoalsHistologicHumanIndividualModelingMolecularMotorMuscleMuscle CellsMuscle DevelopmentMuscular DystrophiesMutateMutationNeuronsNucleic Acid Regulatory SequencesOrganPathogenesisPathway interactionsPhenotypePostdoctoral FellowProtein GlycosylationRNA SplicingRare DiseasesResearchResearch PersonnelSeveritiesSpecificityTestingTherapeuticTherapeutic InterventionTherapy EvaluationTimeTranslationsUntranslated RNAVariantVentWorkZebrafishanalysis pipelinebioinformatics pipelineclinical heterogeneitycognitive disabilitycohortcongenital muscular dystrophycostdeafnessdisease-causing mutationdystroglycanopathyexomegene discoverygenetic analysisgenetic architecturegenetic disorder diagnosisgenetic testinggenome sequencingglycosylationglycosyltransferasein vivo Modelmortalitymouse modelnext generation sequencingnovelnovel therapeuticsoverexpressionpatient populationtargeted treatmenttherapeutic evaluationtherapy developmenttranscriptometranscriptome sequencingtreatment groupwhole genome
项目摘要
ABSTRACT
Congenital muscular dystrophies (CMDs) are a group of heterogeneous pediatric disorders leading to motor
and developmental delay, and childhood mortality. CMDs have variable presentation often affecting multiple
organs, such as the eyes and brain. While this clinical heterogeneity initially hindered genetic analyses, the ad-
vent of next-generation sequencing and whole exome studies greatly increased gene identification reaching up
to 30 genes, with eight genes identified in 2012-2013, three of which by the PI. Each new gene has provided a
different piece of a complex puzzle, not only providing a genetic diagnosis for the affected individuals, but also
informing us on how the mutated genes converge onto shared molecular pathways such as protein glycosyla-
tion. Yet, our group and others have found that mutations in each gene are only present in a small portion of
cases, and 30-40% of cases remain unexplained. In parallel, the large number of known genes has hindered
therapy development as it remains unclear how cases with different genotypes and phenotypes can be grouped
for treatment.
The PI has focused the past decade on studying the genetics of CMD and developing zebrafish models to define
how disease-causing mutations affect muscle and brain development. Through these studies, we have devel-
oped our central hypotheses that most CMD genes regulate interactions with the extracellular matrix (ECM)
through glycosylation, and that unexplained cases will either carry mutations in novel genes involved in cell-
ECM interaction or noncoding variants in already known CMD genes. The proposed studies will test these
hypotheses through two independent and complementary Specific Aims. Specific Aim 1 will leverage the multi-
ple zebrafish models we have developed for known CMD genes to test whether increasing glycosylation will
restore cell-ECM interactions in the muscle and brain in different genetic models of CMD. We will 1) define
which biochemical deficits are shared by different genetic mutations in muscle cells and neurons, and 2) test
whether changes in glycosylation can be beneficial in different forms of CMD. This workflow can then be ex-
panded to future therapeutic interventions and novel disease genes can be rapidly taken from gene identifica-
tion to therapy evaluation. Specific Aim 2 will close the gap in gene discovery in CMDs by testing the hypothe-
sis that undiagnosed CMD cases are caused by a combination of rare mutations in novel genes and non-
coding mutations in intronic/regulatory regions of known CMD genes. We have developed a next generation
sequencing and bioinformatic pipeline that will integrate data from exome, genome, and transcriptome to iden-
tify coding, splicing, and regulatory variants to fully unravel the genetics of CMD.
These studies will directly impact the CMD fields by both discovering how different disease genes contribute to
pathogenesis and by developing novel genetic tests for the global patient population.
摘要
先天性肌营养不良症(CMD)是一组异质性儿科疾病,
发育迟缓和儿童死亡率。CMD具有可变的呈现,通常影响多个
例如眼睛和大脑。虽然这种临床异质性最初阻碍了遗传分析,但ad-
下一代测序和全外显子组研究的出现大大增加了基因鉴定,
到30个基因,其中8个基因在2012-2013年鉴定,其中3个由PI鉴定。每一个新基因都提供了一个
这是一个复杂难题的另一部分,不仅为受影响的个体提供基因诊断,
告诉我们突变的基因如何汇聚到共享的分子途径,如蛋白质糖基化,
是的。然而,我们的团队和其他人发现,每个基因的突变只存在于一小部分,
30-40%的病例仍然无法解释。与此同时,大量的已知基因阻碍了
治疗开发,因为尚不清楚如何将具有不同基因型和表型的病例分组
接受治疗
PI在过去的十年里一直专注于研究CMD的遗传学和开发斑马鱼模型来定义
致病突变如何影响肌肉和大脑发育。通过这些研究,我们已经开发了...
我们的中心假设,大多数CMD基因调节与细胞外基质(ECM)的相互作用,
通过糖基化,以及无法解释的情况下,将携带突变的新基因参与细胞,
ECM相互作用或已知CMD基因中的非编码变体。拟议的研究将测试这些
通过两个独立和互补的具体目标的假设。具体目标1将利用多-
我们已经为已知的CMD基因开发了一个斑马鱼模型,以测试增加糖基化是否会
在不同的CMD遗传模型中恢复肌肉和大脑中的细胞-ECM相互作用。我们将1)定义
肌肉细胞和神经元中的不同基因突变共享哪些生化缺陷,以及2)测试
糖基化的改变是否对不同形式的CMD有益。这个工作流程可以是前-
未来的治疗干预和新的疾病基因可以迅速从基因鉴定中获得,
治疗评价的重要性。具体目标2将通过测试下丘脑,
未确诊的CMD病例是由新基因的罕见突变和非
已知CMD基因的内含子/调控区中的编码突变。我们开发了下一代
测序和生物信息学管道,将整合来自外显子组,基因组和转录组的数据,以确定
编码,剪接和监管变异,以充分解开CMD的遗传学。
这些研究将通过发现不同的疾病基因如何影响CMD领域,
发病机制,并为全球患者群体开发新的基因检测。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
M. CHIARA MANZINI其他文献
M. CHIARA MANZINI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('M. CHIARA MANZINI', 18)}}的其他基金
Identification of Genetic and Molecular Pathways in Congenital Rare Disorders Affecting the Brain and Muscle
影响大脑和肌肉的先天性罕见疾病的遗传和分子途径的鉴定
- 批准号:
10671469 - 财政年份:2019
- 资助金额:
$ 32.86万 - 项目类别:
Identification of Genetic and Molecular Pathways in Congenital Rare Disorders Affecting the Brain and Muscle
影响大脑和肌肉的先天性罕见疾病的遗传和分子途径的鉴定
- 批准号:
10458622 - 财政年份:2019
- 资助金额:
$ 32.86万 - 项目类别:
Defining the molecular mechanisms of sex differences in cognitive function
定义认知功能性别差异的分子机制
- 批准号:
9928606 - 财政年份:2018
- 资助金额:
$ 32.86万 - 项目类别:
Defining the molecular mechanisms of sex differences in cognitive function
定义认知功能性别差异的分子机制
- 批准号:
9974594 - 财政年份:2018
- 资助金额:
$ 32.86万 - 项目类别:
Defining the molecular mechanisms of sex differences in cognitive function
定义认知功能性别差异的分子机制
- 批准号:
10394758 - 财政年份:2018
- 资助金额:
$ 32.86万 - 项目类别:
Intracellular signaling in the development of human cognitive function
人类认知功能发育中的细胞内信号传导
- 批准号:
8618326 - 财政年份:2013
- 资助金额:
$ 32.86万 - 项目类别:
Intracellular signaling in the development of human cognitive function
人类认知功能发育中的细胞内信号传导
- 批准号:
8641713 - 财政年份:2013
- 资助金额:
$ 32.86万 - 项目类别:
Intracellular signaling in the development of human cognitive function
人类认知功能发育中的细胞内信号传导
- 批准号:
8178933 - 财政年份:2011
- 资助金额:
$ 32.86万 - 项目类别:
Intracellular signaling in the development of human cognitive function
人类认知功能发育中的细胞内信号传导
- 批准号:
8316158 - 财政年份:2011
- 资助金额:
$ 32.86万 - 项目类别:
相似海外基金
CAREER: Biochemical and Structural Mechanisms Controlling tRNA-Modifying Metalloenzymes
职业:控制 tRNA 修饰金属酶的生化和结构机制
- 批准号:
2339759 - 财政年份:2024
- 资助金额:
$ 32.86万 - 项目类别:
Continuing Grant
Systematic manipulation of tau protein aggregation: bridging biochemical and pathological properties
tau 蛋白聚集的系统操作:桥接生化和病理特性
- 批准号:
479334 - 财政年份:2023
- 资助金额:
$ 32.86万 - 项目类别:
Operating Grants
Diurnal environmental adaptation via circadian transcriptional control based on a biochemical oscillator
基于生化振荡器的昼夜节律转录控制的昼夜环境适应
- 批准号:
23H02481 - 财政年份:2023
- 资助金额:
$ 32.86万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Leveraging releasable aryl diazonium ions to probe biochemical systems
利用可释放的芳基重氮离子探测生化系统
- 批准号:
2320160 - 财政年份:2023
- 资助金额:
$ 32.86万 - 项目类别:
Standard Grant
Biochemical Mechanisms for Sustained Humoral Immunity
持续体液免疫的生化机制
- 批准号:
10637251 - 财政年份:2023
- 资助金额:
$ 32.86万 - 项目类别:
Structural and biochemical investigations into the mechanism and evolution of soluble guanylate cyclase regulation
可溶性鸟苷酸环化酶调节机制和进化的结构和生化研究
- 批准号:
10604822 - 财政年份:2023
- 资助金额:
$ 32.86万 - 项目类别:
Enhanced Biochemical Monitoring for Aortic Aneurysm Disease
加强主动脉瘤疾病的生化监测
- 批准号:
10716621 - 财政年份:2023
- 资助金额:
$ 32.86万 - 项目类别:
Converting cytoskeletal forces into biochemical signals
将细胞骨架力转化为生化信号
- 批准号:
10655891 - 财政年份:2023
- 资助金额:
$ 32.86万 - 项目类别:
Chemical strategies to investigate biochemical crosstalk in human chromatin
研究人类染色质生化串扰的化学策略
- 批准号:
10621634 - 财政年份:2023
- 资助金额:
$ 32.86万 - 项目类别:
Examination of risk assessment and biochemical assessment of fracture development focusing on the body composition of patients with rheumatoid arthritis
关注类风湿性关节炎患者身体成分的骨折发生风险评估和生化评估检查
- 批准号:
22KJ2600 - 财政年份:2023
- 资助金额:
$ 32.86万 - 项目类别:
Grant-in-Aid for JSPS Fellows














{{item.name}}会员




