Identification of Genetic and Molecular Pathways in Congenital Rare Disorders Affecting the Brain and Muscle

影响大脑和肌肉的先天性罕见疾病的遗传和分子途径的鉴定

基本信息

项目摘要

ABSTRACT Congenital muscular dystrophies (CMDs) are a group of heterogeneous pediatric disorders leading to motor and developmental delay, and childhood mortality. CMDs have variable presentation often affecting multiple organs, such as the eyes and brain. While this clinical heterogeneity initially hindered genetic analyses, the ad- vent of next-generation sequencing and whole exome studies greatly increased gene identification reaching up to 30 genes, with eight genes identified in 2012-2013, three of which by the PI. Each new gene has provided a different piece of a complex puzzle, not only providing a genetic diagnosis for the affected individuals, but also informing us on how the mutated genes converge onto shared molecular pathways such as protein glycosyla- tion. Yet, our group and others have found that mutations in each gene are only present in a small portion of cases, and 30-40% of cases remain unexplained. In parallel, the large number of known genes has hindered therapy development as it remains unclear how cases with different genotypes and phenotypes can be grouped for treatment. The PI has focused the past decade on studying the genetics of CMD and developing zebrafish models to define how disease-causing mutations affect muscle and brain development. Through these studies, we have devel- oped our central hypotheses that most CMD genes regulate interactions with the extracellular matrix (ECM) through glycosylation, and that unexplained cases will either carry mutations in novel genes involved in cell- ECM interaction or noncoding variants in already known CMD genes. The proposed studies will test these hypotheses through two independent and complementary Specific Aims. Specific Aim 1 will leverage the multi- ple zebrafish models we have developed for known CMD genes to test whether increasing glycosylation will restore cell-ECM interactions in the muscle and brain in different genetic models of CMD. We will 1) define which biochemical deficits are shared by different genetic mutations in muscle cells and neurons, and 2) test whether changes in glycosylation can be beneficial in different forms of CMD. This workflow can then be ex- panded to future therapeutic interventions and novel disease genes can be rapidly taken from gene identifica- tion to therapy evaluation. Specific Aim 2 will close the gap in gene discovery in CMDs by testing the hypothe- sis that undiagnosed CMD cases are caused by a combination of rare mutations in novel genes and non- coding mutations in intronic/regulatory regions of known CMD genes. We have developed a next generation sequencing and bioinformatic pipeline that will integrate data from exome, genome, and transcriptome to iden- tify coding, splicing, and regulatory variants to fully unravel the genetics of CMD. These studies will directly impact the CMD fields by both discovering how different disease genes contribute to pathogenesis and by developing novel genetic tests for the global patient population.
摘要

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Novel mutation identification and copy number variant detection via exome sequencing in congenital muscular dystrophy.
  • DOI:
    10.1002/mgg3.1387
  • 发表时间:
    2020-11
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Cauley ES;Pittman A;Mummidivarpu S;Karimiani EG;Martinez S;Moroni I;Boostani R;Podini D;Mora M;Jamshidi Y;Hoffman EP;Manzini MC
  • 通讯作者:
    Manzini MC
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

M. CHIARA MANZINI其他文献

M. CHIARA MANZINI的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('M. CHIARA MANZINI', 18)}}的其他基金

Identification of genetic and molecular pathways in congenital rare disorders affecting the brain and muscle
鉴定影响大脑和肌肉的先天性罕见疾病的遗传和分子途径
  • 批准号:
    10226162
  • 财政年份:
    2019
  • 资助金额:
    $ 32.87万
  • 项目类别:
Identification of Genetic and Molecular Pathways in Congenital Rare Disorders Affecting the Brain and Muscle
影响大脑和肌肉的先天性罕见疾病的遗传和分子途径的鉴定
  • 批准号:
    10458622
  • 财政年份:
    2019
  • 资助金额:
    $ 32.87万
  • 项目类别:
Defining the molecular mechanisms of sex differences in cognitive function
定义认知功能性别差异的分子机制
  • 批准号:
    9928606
  • 财政年份:
    2018
  • 资助金额:
    $ 32.87万
  • 项目类别:
Defining the molecular mechanisms of sex differences in cognitive function
定义认知功能性别差异的分子机制
  • 批准号:
    9974594
  • 财政年份:
    2018
  • 资助金额:
    $ 32.87万
  • 项目类别:
Defining the molecular mechanisms of sex differences in cognitive function
定义认知功能性别差异的分子机制
  • 批准号:
    10394758
  • 财政年份:
    2018
  • 资助金额:
    $ 32.87万
  • 项目类别:
Intracellular signaling in the development of human cognitive function
人类认知功能发育中的细胞内信号传导
  • 批准号:
    8618326
  • 财政年份:
    2013
  • 资助金额:
    $ 32.87万
  • 项目类别:
Intracellular signaling in the development of human cognitive function
人类认知功能发育中的细胞内信号传导
  • 批准号:
    8641713
  • 财政年份:
    2013
  • 资助金额:
    $ 32.87万
  • 项目类别:
Intracellular signaling in the development of human cognitive function
人类认知功能发育中的细胞内信号传导
  • 批准号:
    8178933
  • 财政年份:
    2011
  • 资助金额:
    $ 32.87万
  • 项目类别:
Intracellular signaling in the development of human cognitive function
人类认知功能发育中的细胞内信号传导
  • 批准号:
    8316158
  • 财政年份:
    2011
  • 资助金额:
    $ 32.87万
  • 项目类别:

相似海外基金

CAREER: Biochemical and Structural Mechanisms Controlling tRNA-Modifying Metalloenzymes
职业:控制 tRNA 修饰金属酶的生化和结构机制
  • 批准号:
    2339759
  • 财政年份:
    2024
  • 资助金额:
    $ 32.87万
  • 项目类别:
    Continuing Grant
Leveraging releasable aryl diazonium ions to probe biochemical systems
利用可释放的芳基重氮离子探测生化系统
  • 批准号:
    2320160
  • 财政年份:
    2023
  • 资助金额:
    $ 32.87万
  • 项目类别:
    Standard Grant
Diurnal environmental adaptation via circadian transcriptional control based on a biochemical oscillator
基于生化振荡器的昼夜节律转录控制的昼夜环境适应
  • 批准号:
    23H02481
  • 财政年份:
    2023
  • 资助金额:
    $ 32.87万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Systematic manipulation of tau protein aggregation: bridging biochemical and pathological properties
tau 蛋白聚集的系统操作:桥接生化和病理特性
  • 批准号:
    479334
  • 财政年份:
    2023
  • 资助金额:
    $ 32.87万
  • 项目类别:
    Operating Grants
Converting cytoskeletal forces into biochemical signals
将细胞骨架力转化为生化信号
  • 批准号:
    10655891
  • 财政年份:
    2023
  • 资助金额:
    $ 32.87万
  • 项目类别:
Enhanced Biochemical Monitoring for Aortic Aneurysm Disease
加强主动脉瘤疾病的生化监测
  • 批准号:
    10716621
  • 财政年份:
    2023
  • 资助金额:
    $ 32.87万
  • 项目类别:
Biochemical Mechanisms for Sustained Humoral Immunity
持续体液免疫的生化机制
  • 批准号:
    10637251
  • 财政年份:
    2023
  • 资助金额:
    $ 32.87万
  • 项目类别:
Structural and biochemical investigations into the mechanism and evolution of soluble guanylate cyclase regulation
可溶性鸟苷酸环化酶调节机制和进化的结构和生化研究
  • 批准号:
    10604822
  • 财政年份:
    2023
  • 资助金额:
    $ 32.87万
  • 项目类别:
Chemical strategies to investigate biochemical crosstalk in human chromatin
研究人类染色质生化串扰的化学策略
  • 批准号:
    10621634
  • 财政年份:
    2023
  • 资助金额:
    $ 32.87万
  • 项目类别:
Examination of risk assessment and biochemical assessment of fracture development focusing on the body composition of patients with rheumatoid arthritis
关注类风湿性关节炎患者身体成分的骨折发生风险评估和生化评估检查
  • 批准号:
    22KJ2600
  • 财政年份:
    2023
  • 资助金额:
    $ 32.87万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了