The mechanism of the beta-lactam resistance in Staphylococcus aureus
金黄色葡萄球菌β-内酰胺耐药机制
基本信息
- 批准号:10227664
- 负责人:
- 金额:$ 39.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:ATP-Dependent ProteasesAffectAnti-Bacterial AgentsAntibiotic ResistanceAntibioticsBacteriaBacterial InfectionsBinding ProteinsBiological AssayCell WallCell membraneChromosomesDevelopmentDrug resistanceEnzymesGenesGenomeGoalsHypersensitivityInfectionLactamsMediatingMembraneMethicillin ResistanceMolecularMonobactamsMutagenesisMutationPathway interactionsPenicillin-Binding ProteinsPeptide HydrolasesPeptidoglycanPharmaceutical PreparationsPharmacotherapyPhenotypePneumoniaProductionResistanceResistance developmentRoleSepsisSkin TissueSoft Tissue InfectionsStaphylococcal InfectionsStaphylococcus aureusStaphylococcus aureus infectionSuppressor GenesSuppressor MutationsTestingTherapeutic AgentsToxic Shock Syndromebasebeta-Lactam Resistancebeta-Lactamsdesignenzyme activitygenome sequencinginfectious disease treatmentlipoteichoic acidmethicillin resistant Staphylococcus aureusminimal riskmutantnovelnovel therapeuticsoverexpressionpathogenic bacteriaprotein functionresistance mechanismresistance mutationresistant strainskin disordertransposon sequencingyeast two hybrid system
项目摘要
Project Summary
Cell-wall targeting beta-lactam antibiotics are the largest group of antibacterial agents and have been the
mainstay for treatment of bacterial infections. However, most beta-lactam antibiotics cannot be used for the
treatment of methicillin-resistant Staphylococcus aureus (MRSA) infections because MRSA produces a cell-
wall synthesis enzyme PBP2A, which most beta-lactams cannot inactivate. Although PBP2A is the primary
determinant of MRSA beta-lactam resistance, the overall beta-lactam resistance of MRSA is affected by
additional bacterial factors such as FtsH, a protease in the cell membrane. Overexpression of FtsH makes
MRSA sensitive specifically to beta-lactams. The beta-lactam-sensitizing effect of FtsH is due to its
degradation of YpfP, an enzyme synthesizing the anchor molecule for lipoteichoic acid (LTA). The YpfP-
degradation by FtsH causes the production of abnormally large LTA. On the other hand, increased production
of normal LTA by deletion of the ftsH gene makes MRSA more resistant to beta-lactams. When the production
of normal LTA is suppressed by inhibiting the production of the LTA synthesis enzyme LtaS, MRSA becomes
hypersensitive to beta-lactams. Based on these results, this study hypothesizes that the large LTA lowers
MRSA beta-lactam resistance by suppressing the enzyme activities of the cell-wall synthesis enzymes
whereas the normal LTA is required for them. Even under the beta-lactam sensitizing conditions, MRSA can
regain resistance to beta-lactams. Genome-sequencing of 26 such mutants showed that 16 genes are critical
for MRSA beta-lactam resistance. The long-term goal of this project is to develop novel β-lactam potentiators
against MRSA. The objective of this study is to understand how FtsH and the disturbance in LTA synthesis
sensitize MRSA to β-lactams, and how MRSA regains β-lactam resistance. In aim 1, with the MRSA strains
producing either the large LTA or reduced amount of the normal LTA, the cell wall synthesis steps affected by
the LTA molecules will be determined. The effect of LTA on cell wall synthesis will be directly tested by a
peptidoglycan-synthesis assay. Also, the bacterial two-hybrid analysis will determine whether the degradation
of YpfP is modulated by FtsH-binding proteins. In aim 2, by generating each of the resistance mutations in the
chromosome of MRSA, the mutations critical for MRSA β-lactam resistance will be determined. Also,
transposon-mediated mutagenesis will identify the genes essential for MRSA to regain the β-lactam resistance.
Finally, to test whether the roles of the 16 genes are universally conserved among S. aureus strains, resistant
mutants will be identified from two more MRSA strains, and their genomes will be sequenced. Completion of
this study will reveal the intricate network of the beta-lactam resistance regulators in MRSA and open the door
to developing novel beta-lactam potentiators with minimal risk of resistance development in the treatment of
MRSA infections. Such drugs are expected to reduce the burdens of antibiotic resistance.
项目概要
细胞壁靶向β-内酰胺抗生素是最大的一类抗菌药物,并且已成为最重要的抗菌药物。
治疗细菌感染的主要药物。然而,大多数 β-内酰胺类抗生素不能用于
治疗耐甲氧西林金黄色葡萄球菌 (MRSA) 感染,因为 MRSA 产生一种细胞-
壁合成酶 PBP2A,大多数 β-内酰胺无法使其失活。虽然 PBP2A 是主要的
MRSA β-内酰胺耐药性的决定因素,MRSA 的总体 β-内酰胺耐药性受以下因素影响:
其他细菌因子,例如 FtsH(细胞膜中的一种蛋白酶)。 FtsH 的过度表达使得
MRSA 对 β-内酰胺特别敏感。 FtsH 的 β-内酰胺增敏作用是由于其
YpfP 的降解,YpfP 是一种合成脂磷壁酸 (LTA) 锚分子的酶。 YpfP-
FtsH 的降解导致异常大的 LTA 的产生。另一方面,产量增加
通过删除 ftsH 基因来消除正常 LTA 使 MRSA 对 β-内酰胺具有更强的抵抗力。生产时
通过抑制 LTA 合成酶 LtaS 的产生,抑制正常 LTA 的产生,MRSA 变成
对β-内酰胺过敏。基于这些结果,本研究假设较大的 LTA 会降低
通过抑制细胞壁合成酶的酶活性来抵抗 MRSA β-内酰胺
而他们则需要普通的 LTA。即使在 β-内酰胺致敏条件下,MRSA 也能
恢复对β-内酰胺的抵抗力。对 26 个此类突变体的基因组测序表明,16 个基因至关重要
MRSA β-内酰胺耐药性。该项目的长期目标是开发新型β-内酰胺增效剂
对抗 MRSA。本研究的目的是了解 FtsH 和 LTA 合成中的干扰如何
使 MRSA 对 β-内酰胺敏感,以及 MRSA 如何重新获得 β-内酰胺耐药性。目标 1,针对 MRSA 菌株
产生大量 LTA 或减少量的正常 LTA,细胞壁合成步骤受
LTA 分子将被确定。 LTA对细胞壁合成的影响将通过
肽聚糖合成测定。此外,细菌双杂交分析将确定降解是否
YpfP 的表达受 FtsH 结合蛋白的调节。在目标 2 中,通过在
MRSA 的染色体,将确定对 MRSA β-内酰胺耐药性至关重要的突变。还,
转座子介导的诱变将鉴定 MRSA 恢复 β-内酰胺耐药性所必需的基因。
最后,为了测试这 16 个基因的作用在金黄色葡萄球菌菌株中是否普遍保守,耐药菌株
将从另外两种 MRSA 菌株中鉴定出突变体,并对它们的基因组进行测序。完成
这项研究将揭示 MRSA 中 β-内酰胺耐药调节因子的复杂网络,并打开大门
开发新型 β-内酰胺增效剂,在治疗中将产生耐药性的风险降至最低
MRSA 感染。此类药物有望减轻抗生素耐药性的负担。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Taeok Bae其他文献
Taeok Bae的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Taeok Bae', 18)}}的其他基金
The mechanism of the beta-lactam resistance in Staphylococcus aureus
金黄色葡萄球菌β-内酰胺耐药机制
- 批准号:
10674849 - 财政年份:2020
- 资助金额:
$ 39.63万 - 项目类别:
The mechanism of the beta-lactam resistance in Staphylococcus aureus
金黄色葡萄球菌β-内酰胺耐药机制
- 批准号:
9885286 - 财政年份:2020
- 资助金额:
$ 39.63万 - 项目类别:
The mechanism of the beta-lactam resistance in Staphylococcus aureus
金黄色葡萄球菌β-内酰胺耐药机制
- 批准号:
10452551 - 财政年份:2020
- 资助金额:
$ 39.63万 - 项目类别:
Development of anti-virulence drugs by targeting the SaeRS two component system of Staphylococcus aureus
针对金黄色葡萄球菌SaeRS二组分系统开发抗毒力药物
- 批准号:
9178642 - 财政年份:2016
- 资助金额:
$ 39.63万 - 项目类别:
Development of anti-virulence drugs by targeting the SaeRS two component system of Staphylococcus aureus
针对金黄色葡萄球菌SaeRS二组分系统开发抗毒力药物
- 批准号:
9021269 - 财政年份:2015
- 资助金额:
$ 39.63万 - 项目类别:
Prophage contribution to the virulence of Staphylococcus aureus
原噬菌体对金黄色葡萄球菌毒力的贡献
- 批准号:
8079060 - 财政年份:2009
- 资助金额:
$ 39.63万 - 项目类别:
Prophage contribution to the virulence of Staphylococcus aureus
原噬菌体对金黄色葡萄球菌毒力的贡献
- 批准号:
8470116 - 财政年份:2009
- 资助金额:
$ 39.63万 - 项目类别:
Prophage contribution to the virulence of Staphylococcus aureus
原噬菌体对金黄色葡萄球菌毒力的贡献
- 批准号:
7728803 - 财政年份:2009
- 资助金额:
$ 39.63万 - 项目类别:
Prophage contribution to the virulence of Staphylococcus aureus
原噬菌体对金黄色葡萄球菌毒力的贡献
- 批准号:
7897879 - 财政年份:2009
- 资助金额:
$ 39.63万 - 项目类别:
Prophage contribution to the virulence of Staphylococcus aureus
原噬菌体对金黄色葡萄球菌毒力的贡献
- 批准号:
8288188 - 财政年份:2009
- 资助金额:
$ 39.63万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 39.63万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 39.63万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 39.63万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 39.63万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 39.63万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 39.63万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 39.63万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 39.63万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 39.63万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 39.63万 - 项目类别:
Grant-in-Aid for Early-Career Scientists