DIGITAL HEALTH SOLUTIONS FOR COVID-19: PERSONALIZED ANALYTICS WEARABLE BIOSENSOR PLATFORM FOR EARLY DETECTION OF COVID-19 DECOMPENSATION
COVID-19 数字健康解决方案:用于早期检测 COVID-19 代偿失调的个性化分析可穿戴生物传感器平台
基本信息
- 批准号:10274152
- 负责人:
- 金额:$ 230.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-14 至 2021-01-22
- 项目状态:已结题
- 来源:
- 关键词:Area Under CurveArtificial IntelligenceBiosensorCOVID-19Cloud ComputingDataData AnalyticsData SetDevelopmentEarly DiagnosisEventGoalsHealthHealth StatusHospitalizationPatientsPerformancePopulationReceiver Operating CharacteristicsSecureTestingTrainingUnited States Food and Drug AdministrationUnited States National Institutes of HealthValidationbasecomputational platformcoronavirus diseasedata hubdigitalhuman subjectindexingwearable device
项目摘要
The goal of this project is to develop an artificial intelligence-based data analytics and cloud computing platform, paired with U.S. Food and Drug Administration (FDA)-cleared wearable devices, to create a personalized baseline index that could indicate a change in health status for patients who have tested COVID-19 positive. The project involves the development and validation of a COVID-19 Decompensation Index (CDI) that builds off physIQ’s existing wearable biosensor-derived analytics platform. Data will be collected from 400 human subjects that are both pre-hospitalization subjects (found to be positive for COVID-19) and subjects that have been hospitalized and treated for COVID and then discharged. This combined population will consist of COVID-19 decompensation cases (event cases) and cases for which COVID-19 did not result in any kind of decompensation (non-event cases). The 400-patient dataset will be partitioned into a training subset and a testing subset. Performance will be assessed using receiver operator characteristics (ROC) area under the curve (AUC) as the metric of performance. Data collected under this project will be deidentified and securely transmitted to an NIH data hub.
该项目的目标是开发一个基于人工智能的数据分析和云计算平台,与美国食品和药物管理局(FDA)批准的可穿戴设备配对,以创建一个个性化的基线指数,该指数可以指示COVID-19检测呈阳性的患者的健康状况变化。 该项目涉及COVID-19失代偿指数(CDI)的开发和验证,该指数基于physIQ现有的可穿戴生物传感器衍生分析平台。 将从400名人类受试者中收集数据,这些受试者均为住院前受试者(发现COVID-19呈阳性)和已住院并接受COVID治疗然后出院的受试者。 该合并人群将包括COVID-19失代偿病例(事件病例)和COVID-19未导致任何类型失代偿的病例(非事件病例)。 将400例患者数据集划分为训练子集和测试子集。 将使用受试者工作特征(ROC)曲线下面积(AUC)作为性能指标评估性能。 在该项目下收集的数据将被去识别并安全地传输到NIH数据中心。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KAREN LARIMER其他文献
KAREN LARIMER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KAREN LARIMER', 18)}}的其他基金
DIGITAL HEALTH SOLUTIONS FOR COVID-19: PERSONALIZED ANALYTICS WEARABLE BIOSENSOR PLATFORM FOR EARLY DETECTION OF COVID-19 DECOMPENSATION
COVID-19 数字健康解决方案:用于早期检测 COVID-19 代偿失调的个性化分析可穿戴生物传感器平台
- 批准号:
10329863 - 财政年份:2020
- 资助金额:
$ 230.58万 - 项目类别:
相似海外基金
I-Corps: Translation Potential of a Secure Data Platform Empowering Artificial Intelligence Assisted Digital Pathology
I-Corps:安全数据平台的翻译潜力,赋能人工智能辅助数字病理学
- 批准号:
2409130 - 财政年份:2024
- 资助金额:
$ 230.58万 - 项目类别:
Standard Grant
Planning: Artificial Intelligence Assisted High-Performance Parallel Computing for Power System Optimization
规划:人工智能辅助高性能并行计算电力系统优化
- 批准号:
2414141 - 财政年份:2024
- 资助金额:
$ 230.58万 - 项目类别:
Standard Grant
REU Site: CyberAI: Cybersecurity Solutions Leveraging Artificial Intelligence for Smart Systems
REU 网站:CyberAI:利用人工智能实现智能系统的网络安全解决方案
- 批准号:
2349104 - 财政年份:2024
- 资助金额:
$ 230.58万 - 项目类别:
Standard Grant
EAGER: Artificial Intelligence to Understand Engineering Cultural Norms
EAGER:人工智能理解工程文化规范
- 批准号:
2342384 - 财政年份:2024
- 资助金额:
$ 230.58万 - 项目类别:
Standard Grant
Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
- 批准号:
2343607 - 财政年份:2024
- 资助金额:
$ 230.58万 - 项目类别:
Standard Grant
Artificial intelligence in education: Democratising policy
教育中的人工智能:政策民主化
- 批准号:
DP240100602 - 财政年份:2024
- 资助金额:
$ 230.58万 - 项目类别:
Discovery Projects
Reassessing the Appropriateness of currently-available Data-set Protection Levers in the era of Artificial Intelligence
重新评估人工智能时代现有数据集保护手段的适用性
- 批准号:
23K22068 - 财政年份:2024
- 资助金额:
$ 230.58万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
TRUST2 - Improving TRUST in artificial intelligence and machine learning for critical building management
TRUST2 - 提高关键建筑管理的人工智能和机器学习的信任度
- 批准号:
10093095 - 财政年份:2024
- 资助金额:
$ 230.58万 - 项目类别:
Collaborative R&D
QUANTUM-TOX - Revolutionizing Computational Toxicology with Electronic Structure Descriptors and Artificial Intelligence
QUANTUM-TOX - 利用电子结构描述符和人工智能彻底改变计算毒理学
- 批准号:
10106704 - 财政年份:2024
- 资助金额:
$ 230.58万 - 项目类别:
EU-Funded
Application of artificial intelligence to predict biologic systemic therapy clinical response, effectiveness and adverse events in psoriasis
应用人工智能预测生物系统治疗银屑病的临床反应、有效性和不良事件
- 批准号:
MR/Y009657/1 - 财政年份:2024
- 资助金额:
$ 230.58万 - 项目类别:
Fellowship














{{item.name}}会员




