Acoustic Tweezing Cytometry for Efficient Neural Differentiation
用于高效神经分化的声学镊子细胞术
基本信息
- 批准号:10274928
- 负责人:
- 金额:$ 44.12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-22 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:ALS patientsAcousticsAdoptionAdultAmyotrophic Lateral SclerosisAxonBiological AssayBiomechanicsBiomedical EngineeringBiophysicsCell Culture TechniquesCell Differentiation processCell TherapyCell physiologyCellsClinicalCuesCytometryCytoskeletonDataDegenerative DisorderDerivation procedureDevelopmentDiseaseDisease modelDrug ScreeningEmbryoEmbryonic DevelopmentEngineeringEpiblastEthnic OriginFutureGenerationsGenetic DiseasesGoalsGrantHumanHuman DevelopmentIn VitroInfectionInflammationInjuryIntegrinsInvestigationMalignant - descriptorMechanical StimulationMechanicsMediatingMicrobubblesMorphogenesisMotor Neuron DiseaseMotor NeuronsMuscleNeuroepithelialNeuronsPathway interactionsPeriodicityPharmaceutical PreparationsPharmacologyPhysical environmentPluripotent Stem CellsProcessPropertyProtocols documentationRegenerative MedicineReportingResearchRoleSignal TransductionSourceSpatial DistributionSpinal CordSpinal Muscular AtrophySpinal cord injurySystemTechnologyTestingTherapeuticToxicologyTranscription CoactivatorTraumaUltrasonographybaseblastocystcell typeclinically relevantdesigndifferentiation protocolhuman pluripotent stem cellimplantationimprovedin vivointerestlarge scale productionmechanical forcenerve stem cellnervous system disorderneuron lossnew technologynovelnovel strategiesnovel therapeuticsoperationpluripotencypublic health relevanceregenerative therapyrelating to nervous systemself-renewalsexsingle cell analysisstem cellstool
项目摘要
Project Summary
Acoustic Tweezing Cytometry for Efficient Neural Differentiation
Human pluripotent stem cells (hPSCs) have been hailed as a promising cell source for treating degenerative,
malignant, and genetic diseases, or injuries due to inflammation, infection, and trauma. hPSCs have also been
proven as an invaluable discovery tool to study human development and for developing and testing new drugs.
However, to fully realize the tremendous potential of hPSCs, the first and perhaps the most critical step is the
directed differentiation of hPSCs to specific functional cell types with high efficiency and purity.
Motor neurons (MNs) are a specialized class of neurons that reside in the spinal cord and project axons
to muscles to control their activity. MNs are damaged in diseases such as spinal cord injury, amyotrophic
lateral sclerosis (ALS) and spinal muscular atrophy (SMA). While there are significant interests in
differentiating hPSCs into functional MNs for cell therapies and understanding of MN degenerative diseases,
poorly defined culture conditions and inefficient protocols of MN differentiation from hPSCs have significantly
hindered their broad use. Given that embryonic development is a dynamic process involving constantly
changing physical environments, the central hypothesis of this proposed research is that hPSCs, which is
equivalent to the epiblast in the peri-implantation human embryo, are intrinsically mechanosensitive, and
biophysical cues in the cell microenvironment can provide potent regulatory signals to control their
differentiation and functional maturation towards specific neuronal subtypes such as MNs. This proposal is
strongly motivated by our exciting preliminary data showing that a novel ultrasound-based technology, acoustic
tweezing cytometry (ATC), which can apply controlled dynamic subcellular mechanical forces to hPSCs, can
indeed elicit neuroepithelial and even MN differentiation of hPSCs much more rapidly compared to
conventional protocols that solely rely on soluble factors. Thus we propose in this research to fully develop the
ATC technology to not only elucidate the intrinsic mechanosensitive properties of hPSCs, but also utilize the
technology to improve large-scale production of functional MNs.
In this research we propose to (Aim 1) develop high-throughput ATC technology with improved
capability for mechanical stimulation of hPSCs; (Aim 2) elucidate the role of a regulatory network comprising
mechanosensitive pathways (BMP/YAP activity, RhoA/ROCK/cytoskeleton contractility, and Hippo/LATS) in
regulating ATC-facilitated neuroepithelial differentiation of hPSCs; (Aim 3) apply ATC for high-efficiency
functional MN generation from hPSCs. Successful completion of this research will establish a new, novel
approach for hPSC neural differentiation and MN generation, potentially enabling drastic advances in large-
scale production of clinical-grade MNs for cell-based therapies and drug screens. Our proposed research will
also help establish a novel mechanistic framework for understanding mechanosensitive hPSC properties and
will chart a path to unravel their full complexity for their future regenerative medicine applications.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CHERI X DENG其他文献
CHERI X DENG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CHERI X DENG', 18)}}的其他基金
Acoustic Tweezing Cytometry for Efficient Neural Differentiation
用于高效神经分化的声学镊子细胞术
- 批准号:
10675739 - 财政年份:2021
- 资助金额:
$ 44.12万 - 项目类别:
Microscale Mechanobiology for Musculoskeletal Tissue Engineering using Advanced Ultrasound Techniques
使用先进超声技术进行肌肉骨骼组织工程的微观力学生物学
- 批准号:
9237753 - 财政年份:2017
- 资助金额:
$ 44.12万 - 项目类别:
Microscale Mechanobiology for Musculoskeletal Tissue Engineering using Advanced Ultrasound Techniques
使用先进超声技术进行肌肉骨骼组织工程的微观力学生物学
- 批准号:
9974508 - 财政年份:2017
- 资助金额:
$ 44.12万 - 项目类别:
Microscale Mechanobiology for Musculoskeletal Tissue Engineering using Advanced Ultrasound Techniques
使用先进超声技术进行肌肉骨骼组织工程的微观力学生物学
- 批准号:
10223264 - 财政年份:2017
- 资助金额:
$ 44.12万 - 项目类别:
Acoustic tweezing cytometry: technology development and stem cell applications
声学镊子细胞术:技术开发和干细胞应用
- 批准号:
8896236 - 财政年份:2015
- 资助金额:
$ 44.12万 - 项目类别:
Acoustic tweezing cytometry: technology development and stem cell applications
声学镊子细胞术:技术开发和干细胞应用
- 批准号:
9206500 - 财政年份:2015
- 资助金额:
$ 44.12万 - 项目类别:
Acoustic tweezing cytometry: technology development and stem cell applications
声学镊子细胞术:技术开发和干细胞应用
- 批准号:
9049494 - 财政年份:2015
- 资助金额:
$ 44.12万 - 项目类别:
Ultrasound-mediated Directed Osteogenic Differentiation of Mesenchymal Stem Cells
超声介导的间充质干细胞定向成骨分化
- 批准号:
8637285 - 财政年份:2014
- 资助金额:
$ 44.12万 - 项目类别:
Ultrasound-mediated Directed Osteogenic Differentiation of Mesenchymal Stem Cells
超声介导的间充质干细胞定向成骨分化
- 批准号:
8925077 - 财政年份:2014
- 资助金额:
$ 44.12万 - 项目类别:
Quantitative Ultrasound Imaging for Noninvasive Assessment of Engineered Tissues
用于工程组织无创评估的定量超声成像
- 批准号:
8583800 - 财政年份:2013
- 资助金额:
$ 44.12万 - 项目类别:
相似海外基金
Nonlinear Acoustics for the conditioning monitoring of Aerospace structures (NACMAS)
用于航空航天结构调节监测的非线性声学 (NACMAS)
- 批准号:
10078324 - 财政年份:2023
- 资助金额:
$ 44.12万 - 项目类别:
BEIS-Funded Programmes
ORCC: Marine predator and prey response to climate change: Synthesis of Acoustics, Physiology, Prey, and Habitat In a Rapidly changing Environment (SAPPHIRE)
ORCC:海洋捕食者和猎物对气候变化的反应:快速变化环境中声学、生理学、猎物和栖息地的综合(蓝宝石)
- 批准号:
2308300 - 财政年份:2023
- 资助金额:
$ 44.12万 - 项目类别:
Continuing Grant
University of Salford (The) and KP Acoustics Group Limited KTP 22_23 R1
索尔福德大学 (The) 和 KP Acoustics Group Limited KTP 22_23 R1
- 批准号:
10033989 - 财政年份:2023
- 资助金额:
$ 44.12万 - 项目类别:
Knowledge Transfer Partnership
User-controllable and Physics-informed Neural Acoustics Fields for Multichannel Audio Rendering and Analysis in Mixed Reality Application
用于混合现实应用中多通道音频渲染和分析的用户可控且基于物理的神经声学场
- 批准号:
23K16913 - 财政年份:2023
- 资助金额:
$ 44.12万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Combined radiation acoustics and ultrasound imaging for real-time guidance in radiotherapy
结合辐射声学和超声成像,用于放射治疗的实时指导
- 批准号:
10582051 - 财政年份:2023
- 资助金额:
$ 44.12万 - 项目类别:
Comprehensive assessment of speech physiology and acoustics in Parkinson's disease progression
帕金森病进展中言语生理学和声学的综合评估
- 批准号:
10602958 - 财政年份:2023
- 资助金额:
$ 44.12万 - 项目类别:
The acoustics of climate change - long-term observations in the arctic oceans
气候变化的声学——北冰洋的长期观测
- 批准号:
2889921 - 财政年份:2023
- 资助金额:
$ 44.12万 - 项目类别:
Studentship
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
- 批准号:
2343847 - 财政年份:2023
- 资助金额:
$ 44.12万 - 项目类别:
Standard Grant
Flow Physics and Vortex-Induced Acoustics in Bio-Inspired Collective Locomotion
仿生集体运动中的流动物理学和涡激声学
- 批准号:
DGECR-2022-00019 - 财政年份:2022
- 资助金额:
$ 44.12万 - 项目类别:
Discovery Launch Supplement
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
- 批准号:
2141275 - 财政年份:2022
- 资助金额:
$ 44.12万 - 项目类别:
Standard Grant














{{item.name}}会员




