Microscale Mechanobiology for Musculoskeletal Tissue Engineering using Advanced Ultrasound Techniques
使用先进超声技术进行肌肉骨骼组织工程的微观力学生物学
基本信息
- 批准号:10223264
- 负责人:
- 金额:$ 36.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAcousticsAnisotropyBone RegenerationCalvariaCell physiologyCellsClinicalCuesDataDefectDevelopmentEngineeringEnvironmentExtracellular MatrixFocused UltrasoundFrequenciesGoalsHistologyHydrogelsImageIn VitroJointsKnowledgeLeadLengthMeasuresMechanical StimulationMechanicsMesenchymal DifferentiationMesenchymal Stem CellsMethodsMineralsModalityModelingMonitorMusculoskeletalOsteogenesisPeriodicityPhenotypePlayPropertyPulse PressureRadiationRegenerative MedicineRelaxationResolutionRoleSamplingSpinal FusionStressStress TestsSystemTechniquesTestingTherapeuticTherapeutic InterventionThree-dimensional analysisTimeTissue EngineeringTissuesUltrasonographyWorkbasebonecell dimensiondesignelastographyhealingimprovedimproved outcomein vivoin vivo regenerationinnovationinsightmechanical forcemechanical propertiesmicroCTosteogenicphysical propertypressureradio frequencyresponsespatiotemporalstem cellstissue regenerationtooltwo-dimensionalviscoelasticity
项目摘要
Project Summary
Mechanical forces are a key component of the cellular microenvironment, and are well established to have
potent effects on cells and tissues. The passive mechanical properties of two-dimensional cell substrates and
three-dimensional extracellular matrices have been shown to influence progenitor cell phenotype and can be
used to direct cell function. In addition, active stimulation of cells and tissues using externally applied forces
has been applied at both the cell and tissue level to induce a variety of responses. Mechanobiology is
particularly relevant to musculoskeletal tissues, but there is a gap in our understanding of the physical
properties of the tissue environment on length scales that cells sense. This project builds on preliminary work
by the project team in applying advanced ultrasound techniques to studying the microscale physical properties
of engineered musculoskeletal tissues composed of cell-seeded mineralizing hydrogels. It integrates spectral
ultrasound imaging (SUSI), dual-mode ultrasound elastography (DUE), and ultrasound-induced compressive
stimulation. SUSI is a technique that uses the backscattered radiofrequency spectrum to derive information
about the composition of a sample. DUE applies acoustic radiation force to deform hydrogels and measure
their mechanical properties. Focused ultrasound-induced compression also applies acoustic pressure to
mechanically stimulate tissues. A key feature of ultrasound techniques is that they are noninvasive and
therefore can be used to study developing tissues over time. In addition, imaging and deformation can be
applied at sub-millimeter resolution. This project will combine these advanced ultrasound techniques to create
a system that can comprehensively characterize and stimulate engineered musculoskeletal tissues at the
microscale. The target application is to potentiate bone formation using mesenchymal stem cells (MSC)
embedded in a 3D hydrogel matrix. The Specific Aims are 1) to integrate spectral ultrasound imaging (SUSI)
and dual-mode ultrasound elastography (DUE) to compositionally and mechanically characterize mineralizing
tissues, 2) to probe the effects of passive matrix mechanical properties on MSC phenotype using SUSI-DUE,
3) to actively stimulate osteogenic differentiation of MSC in hydrogel matrices using ultrasound-induced cyclic
compression, and 4) to apply SUSI-DUE to catalyze and monitor bone regeneration in vivo. This project will
investigate musculoskeletal mechanobiology using an innovative new tool that could have important impact on
regenerative medicine. The long term goal is a therapeutic intervention to potentiate bone formation in
indications where accelerated healing would lead to improved outcomes, such as treatment of non-unions and
recalcitrant spinal fusions.
项目摘要
机械力是细胞微环境的一个关键组成部分,并且已经得到了很好的证实
对细胞和组织有很强的影响。二维细胞衬底的被动力学性能和
三维细胞外基质已被证明可以影响祖细胞的表型,并且可以
用于指导细胞功能。此外,使用外力对细胞和组织进行主动刺激
已经在细胞和组织水平上应用,以诱导各种反应。机械生物学是
尤其与肌肉骨骼组织有关,但我们对物理学的理解存在差距
细胞能感觉到的长度尺度上的组织环境特性。这个项目建立在前期工作的基础上。
由项目组应用先进的超声波技术研究微尺度的物理性质
由细胞种子矿化水凝胶组成的工程化肌肉骨骼组织。它集成了光谱
超声成像(SUSI)、双模超声弹性成像(DUE)和超声诱导压迫
刺激。SUSI是一种使用反向散射射频谱来获取信息的技术
关于样品的成分。施加声辐射力使水凝胶变形及测量
它们的机械性能。聚焦超声诱导的压缩也将声压应用于
机械刺激组织。超声波技术的一个关键特征是它们是非侵入性的
因此可以用来研究随着时间的推移发育中的组织。此外,成像和变形也可以
应用于亚毫米分辨率。该项目将结合这些先进的超声波技术来创造
一种能够全面表征和刺激工程化肌肉骨骼组织的系统
微尺度的。其目标应用是使用间充质干细胞(MSC)促进骨形成
嵌入在3D水凝胶基质中。具体目标是:1)整合频谱超声成像(SUSI)
以及双模超声弹性成像(DUE),以从成分和力学上表征成矿作用
2)探讨被动基质力学性能对MSC表型的影响。
3)利用超声诱导的细胞周期作用,积极促进MSC在水凝胶基质中的成骨分化。
加压,以及4)应用苏西-因催化和监测体内骨再生。这个项目将
使用一种创新的新工具研究肌肉骨骼机械生物学,这可能对
再生医学。长期目标是一种治疗干预,以促进骨形成
加速愈合将导致改善结果的适应症,如治疗骨不连和
顽固的脊柱融合术。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Multichannel Resonant Acoustic Rheometry System for Rapid and Efficient Quantification of Human Plasma Coagulation.
多通道共振声流变测量系统,用于快速有效地定量人体血浆凝固。
- DOI:10.21203/rs.3.rs-3132931/v1
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Hendren,Christina;Li,Weiping;Stegemann,JanP;Hall,TimothyL;Deng,CheriX
- 通讯作者:Deng,CheriX
Multichannel resonant acoustic rheometry system for quantification of coagulation of multiple human plasma samples.
- DOI:10.1038/s41598-023-46518-w
- 发表时间:2023-11-07
- 期刊:
- 影响因子:4.6
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CHERI X DENG其他文献
CHERI X DENG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CHERI X DENG', 18)}}的其他基金
Acoustic Tweezing Cytometry for Efficient Neural Differentiation
用于高效神经分化的声学镊子细胞术
- 批准号:
10274928 - 财政年份:2021
- 资助金额:
$ 36.14万 - 项目类别:
Acoustic Tweezing Cytometry for Efficient Neural Differentiation
用于高效神经分化的声学镊子细胞术
- 批准号:
10675739 - 财政年份:2021
- 资助金额:
$ 36.14万 - 项目类别:
Microscale Mechanobiology for Musculoskeletal Tissue Engineering using Advanced Ultrasound Techniques
使用先进超声技术进行肌肉骨骼组织工程的微观力学生物学
- 批准号:
9237753 - 财政年份:2017
- 资助金额:
$ 36.14万 - 项目类别:
Microscale Mechanobiology for Musculoskeletal Tissue Engineering using Advanced Ultrasound Techniques
使用先进超声技术进行肌肉骨骼组织工程的微观力学生物学
- 批准号:
9974508 - 财政年份:2017
- 资助金额:
$ 36.14万 - 项目类别:
Acoustic tweezing cytometry: technology development and stem cell applications
声学镊子细胞术:技术开发和干细胞应用
- 批准号:
8896236 - 财政年份:2015
- 资助金额:
$ 36.14万 - 项目类别:
Acoustic tweezing cytometry: technology development and stem cell applications
声学镊子细胞术:技术开发和干细胞应用
- 批准号:
9206500 - 财政年份:2015
- 资助金额:
$ 36.14万 - 项目类别:
Acoustic tweezing cytometry: technology development and stem cell applications
声学镊子细胞术:技术开发和干细胞应用
- 批准号:
9049494 - 财政年份:2015
- 资助金额:
$ 36.14万 - 项目类别:
Ultrasound-mediated Directed Osteogenic Differentiation of Mesenchymal Stem Cells
超声介导的间充质干细胞定向成骨分化
- 批准号:
8637285 - 财政年份:2014
- 资助金额:
$ 36.14万 - 项目类别:
Ultrasound-mediated Directed Osteogenic Differentiation of Mesenchymal Stem Cells
超声介导的间充质干细胞定向成骨分化
- 批准号:
8925077 - 财政年份:2014
- 资助金额:
$ 36.14万 - 项目类别:
Quantitative Ultrasound Imaging for Noninvasive Assessment of Engineered Tissues
用于工程组织无创评估的定量超声成像
- 批准号:
8583800 - 财政年份:2013
- 资助金额:
$ 36.14万 - 项目类别:
相似海外基金
Nonlinear Acoustics for the conditioning monitoring of Aerospace structures (NACMAS)
用于航空航天结构调节监测的非线性声学 (NACMAS)
- 批准号:
10078324 - 财政年份:2023
- 资助金额:
$ 36.14万 - 项目类别:
BEIS-Funded Programmes
ORCC: Marine predator and prey response to climate change: Synthesis of Acoustics, Physiology, Prey, and Habitat In a Rapidly changing Environment (SAPPHIRE)
ORCC:海洋捕食者和猎物对气候变化的反应:快速变化环境中声学、生理学、猎物和栖息地的综合(蓝宝石)
- 批准号:
2308300 - 财政年份:2023
- 资助金额:
$ 36.14万 - 项目类别:
Continuing Grant
University of Salford (The) and KP Acoustics Group Limited KTP 22_23 R1
索尔福德大学 (The) 和 KP Acoustics Group Limited KTP 22_23 R1
- 批准号:
10033989 - 财政年份:2023
- 资助金额:
$ 36.14万 - 项目类别:
Knowledge Transfer Partnership
User-controllable and Physics-informed Neural Acoustics Fields for Multichannel Audio Rendering and Analysis in Mixed Reality Application
用于混合现实应用中多通道音频渲染和分析的用户可控且基于物理的神经声学场
- 批准号:
23K16913 - 财政年份:2023
- 资助金额:
$ 36.14万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Combined radiation acoustics and ultrasound imaging for real-time guidance in radiotherapy
结合辐射声学和超声成像,用于放射治疗的实时指导
- 批准号:
10582051 - 财政年份:2023
- 资助金额:
$ 36.14万 - 项目类别:
Comprehensive assessment of speech physiology and acoustics in Parkinson's disease progression
帕金森病进展中言语生理学和声学的综合评估
- 批准号:
10602958 - 财政年份:2023
- 资助金额:
$ 36.14万 - 项目类别:
The acoustics of climate change - long-term observations in the arctic oceans
气候变化的声学——北冰洋的长期观测
- 批准号:
2889921 - 财政年份:2023
- 资助金额:
$ 36.14万 - 项目类别:
Studentship
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
- 批准号:
2343847 - 财政年份:2023
- 资助金额:
$ 36.14万 - 项目类别:
Standard Grant
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
- 批准号:
2141275 - 财政年份:2022
- 资助金额:
$ 36.14万 - 项目类别:
Standard Grant
Flow Physics and Vortex-Induced Acoustics in Bio-Inspired Collective Locomotion
仿生集体运动中的流动物理学和涡激声学
- 批准号:
DGECR-2022-00019 - 财政年份:2022
- 资助金额:
$ 36.14万 - 项目类别:
Discovery Launch Supplement