Dynamic Biomaterial Design to Probe the Cellular Response to Fibrotic Stiffening
动态生物材料设计探测细胞对纤维化硬化的反应
基本信息
- 批准号:10275443
- 负责人:
- 金额:$ 39.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-15 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:ATAC-seqAgingArchitectureAttentionBiochemicalBiocompatible MaterialsBiogenesisBiological ModelsBiophysicsCardiac MyocytesCardiomyopathiesCell Culture TechniquesCell DeathCellsCessation of lifeChemistryChromatinChronicCicatrixContractsCuesCytoskeletonDNA DamageDNA MethylationDefectDepositionDiseaseDuchenne muscular dystrophyDystrophinEngineeringEpigenetic ProcessExhibitsExposure toExtracellular MatrixFailureFamilyFibrosisFluorescence MicroscopyFormulationFree RadicalsFunctional disorderGelGenerationsGenetic DiseasesGoalsGuanosine Triphosphate PhosphohydrolasesHeartHeart failureHeritabilityHumanHydrogelsImpairmentIn SituIn VitroIndividualInflammationInterventionKnowledgeLeadLightLiverLungMeasuresMechanicsMediatingMemoryMicroscopyMitochondriaModelingModificationMolecularMutationOrgan failurePathogenesisPathogenicityPathologicPathway interactionsPatientsPatternPhenotypeProductionPropertyProteinsReactionReactive Oxygen SpeciesResearchResearch ProposalsRoleSarcomeresSignal TransductionSkeletal MuscleStimulusStressStructural ProteinSystemTherapeutic InterventionTimeTissue ModelTissuesTraction Force MicroscopyWorkbasebiomaterial compatibilitybisulfite sequencingblood pumpcycloadditiondesignimprintin vitro Modelinduced pluripotent stem cellinherited cardiomyopathyinsightlink proteinmechanotransductionnovelnovel strategiesresponserhorho GTP-Binding Proteinstemporal measurementtissue regenerationtissue repairwound healing
项目摘要
PROJECT SUMMARY
Despite the ubiquitous role of fibrosis in tissue dysfunction arising from aging and disease, no representative
in vitro model of the fibrotic microenvironment exists. Fibrosis is characterized by excess extracellular matrix
(ECM) deposition that stiffens the cellular microenvironment. Therefore, to model fibrosis in vitro, cell culture
substrates that permit quantitative, dynamic tuning of matrix mechanics are necessary. However, existing
dynamic hydrogel culture platforms generally rely on chemistries that may be toxic to cells or that simultaneously
change multiple parameters, making it difficult to assign causal relationships between altered matrix properties
and cell fate changes. Fibrotic stiffening occurs in a wide range of tissues, including the skeletal muscles, liver,
lungs, and heart. Numerous genetic cardiomyopathies are characterized by progressive fibrotic stiffening that
precedes heart failure. While fibrotic stiffening is known to impair the heart’s ability to pump blood, the impact of
stiffening on the phenotype of individual cardiomyocytes remains poorly understood. The goal of this research
proposal is to develop an in vitro model of tissue fibrosis based on dynamic hydrogel biomaterials that enables
real time measurement of cellular dysfunction to determine how progressive fibrotic stiffening detrimentally
impacts cell fate. As a model system, we will interrogate the effects of stiffening on human cardiomyocytes
differentiated from induced pluripotent stem cells from Duchenne muscular dystrophy (DMD) patients. DMD is
an ideal model system for studying outside-in mechanosignaling, as DMD arises from a lack of dystrophin, a
structural protein linking the contractile cytoskeleton to the ECM. We will use the dynamic hydrogels developed
during this research to assess contractile dysfunction, aberrant activation of mechanotransduction signaling, and
novel molecular mechanisms of “mechanical memory” arising from fibrotic stiffening.
In Aim 1, we will develop a synthetic hydrogel system that uses near-infrared light and bioorthogonal
reactions to dynamically stiffen the gels, mimicking fibrosis. These hydrogels will be used to determine how
contractile dysfunction arises from fibrotic stiffening. In Aim 2, we will determine how increased stiffness alters
biochemical signaling in cardiomyocytes, focusing both on “canonical” mechanotransduction through Rho
GTPases and YAP signaling and on a new mechanosensitive pathway in actively contracting cells that involves
mechanical generation of reactive oxygen species (ROS), DNA damage, and impaired mitochondrial biogenesis.
In Aim 3, we will investigate the first example of “mechanical memory” in cardiomyocytes. We will develop a
hydrogel platform that is stiffened by one wavelength of light and subsequently softened by a second wavelength.
This system will enable identification of molecular mechanisms by which exposure to a stiffened
microenvironment causes persistent cellular dysfunction and strategies to reverse this memory. The engineered
platforms developed will be broadly useful for studying fibrosis in progressive genetic diseases as well as aging.
项目摘要
尽管纤维化在由衰老和疾病引起的组织功能障碍中普遍存在,但没有代表性的研究表明,
存在纤维化微环境的体外模型。纤维化的特征是细胞外基质过量
(ECM)沉积,使细胞微环境变硬。因此,为了在体外建立纤维化模型,细胞培养
需要允许定量、动态调节基质力学的基质。但现有
动态水凝胶培养平台通常依赖于可能对细胞有毒或同时
改变多个参数,使得难以指定改变的矩阵属性之间的因果关系
细胞命运也会改变纤维化硬化发生在广泛的组织中,包括骨骼肌,肝脏,
肺和心脏许多遗传性心肌病的特征在于进行性纤维化硬化,
会导致心力衰竭虽然已知纤维化硬化会损害心脏泵血的能力,但
个体心肌细胞表型的硬化仍然知之甚少。本研究的目的
一项提案是开发一种基于动态水凝胶生物材料的组织纤维化体外模型,
细胞功能障碍的真实的时间测量,以确定渐进性纤维化硬化是如何渐进性地
影响细胞命运作为一个模型系统,我们将询问僵硬对人类心肌细胞的影响
从来自杜氏肌营养不良症(DMD)患者的诱导多能干细胞分化。dmd是
一个理想的模型系统,用于研究由外向内的机械信号,因为DMD是由于缺乏肌营养不良蛋白,
连接收缩性细胞骨架和ECM的结构蛋白。我们将使用动态水凝胶开发
在这项研究中,评估收缩功能障碍,机械传导信号的异常激活,
纤维化硬化引起的"机械记忆"的新分子机制。
在目标1中,我们将开发一种使用近红外光和生物正交的合成水凝胶系统,
动态地使凝胶变性的反应,模拟纤维化。这些水凝胶将用于确定如何
收缩功能障碍由纤维化硬化引起。在目标2中,我们将确定增加的刚度如何改变
心肌细胞中的生化信号传导,集中在通过Rho的"典型"机械转导
GTPases和雅普信号传导以及在主动收缩细胞中的一种新的机械敏感性途径,
机械产生活性氧(ROS)、DNA损伤和线粒体生物发生受损。
在目标3中,我们将研究心肌细胞中“机械记忆”的第一个例子。我们将开发一个
水凝胶平台通过一种波长的光硬化,随后通过第二种波长软化。
该系统将能够识别分子机制,通过该机制,暴露于硬化的
微环境导致持续的细胞功能障碍和逆转这种记忆的策略。述工程化
开发的平台将广泛用于研究进行性遗传疾病和衰老中的纤维化。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Helen M Blau其他文献
Contribution of hematopoietic stem cells to skeletal muscle
造血干细胞对骨骼肌的贡献
- DOI:
10.1038/nm959 - 发表时间:
2003-11-16 - 期刊:
- 影响因子:50.000
- 作者:
Stéphane Y Corbel;Adrienne Lee;Lin Yi;Jeffrey Duenas;Timothy R Brazelton;Helen M Blau;Fabio M V Rossi - 通讯作者:
Fabio M V Rossi
805-5 Asymmetric dimethylarginine impairs angiogenesis and limb perfusion in a murine model of hindlimb ischemia
- DOI:
10.1016/s0735-1097(04)92002-5 - 发表时间:
2004-03-03 - 期刊:
- 影响因子:
- 作者:
Johannes Jacobi;Karsten Sydow;Georges von Degenfeld;Ying Zhang;Bingyin Wang;Hayan Dayoub;Ken Y Lin;Andrew J Patterson;Masumi Kimoto;Helen M Blau;John P Cooke - 通讯作者:
John P Cooke
Helen M Blau的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Helen M Blau', 18)}}的其他基金
Control of Muscle Stem Cells to Enhance Regeneration
控制肌肉干细胞以增强再生
- 批准号:
10558739 - 财政年份:2022
- 资助金额:
$ 39.36万 - 项目类别:
Control of Muscle Stem Cells to Enhance Regeneration
控制肌肉干细胞以增强再生
- 批准号:
10346767 - 财政年份:2022
- 资助金额:
$ 39.36万 - 项目类别:
Dynamic Biomaterial Design to Probe the Cellular Response to Fibrotic Stiffening
动态生物材料设计探测细胞对纤维化硬化的反应
- 批准号:
10669074 - 财政年份:2021
- 资助金额:
$ 39.36万 - 项目类别:
Dynamic Biomaterial Design to Probe the Cellular Response to Fibrotic Stiffening
动态生物材料设计探测细胞对纤维化硬化的反应
- 批准号:
10463822 - 财政年份:2021
- 资助金额:
$ 39.36万 - 项目类别:
Regulation of eicosanoid signaling lipids to improve skeletal muscle function and increase healthspan during aging
调节类二十烷酸信号脂质以改善骨骼肌功能并延长衰老过程中的健康寿命
- 批准号:
10402400 - 财政年份:2020
- 资助金额:
$ 39.36万 - 项目类别:
Improvement and standardization of a bioinformatic software suite for multiplexed imaging
用于多重成像的生物信息学软件套件的改进和标准化
- 批准号:
10609313 - 财政年份:2020
- 资助金额:
$ 39.36万 - 项目类别:
Regulation of eicosanoid signaling lipids to improve skeletal muscle function and increase healthspan during aging
调节类二十烷酸信号脂质以改善骨骼肌功能并延长衰老过程中的健康寿命
- 批准号:
10263309 - 财政年份:2020
- 资助金额:
$ 39.36万 - 项目类别:
Regulation of eicosanoid signaling lipids to improve skeletal muscle function and increase healthspan during aging
调节类二十烷酸信号脂质以改善骨骼肌功能并延长衰老过程中的健康寿命
- 批准号:
10634523 - 财政年份:2020
- 资助金额:
$ 39.36万 - 项目类别:
Regulation of eicosanoid signaling lipids to improve skeletal muscle function and increase healthspan during aging
调节类二十烷酸信号脂质以改善骨骼肌功能并延长衰老过程中的健康寿命
- 批准号:
10095406 - 财政年份:2020
- 资助金额:
$ 39.36万 - 项目类别:
Regulation of eicosanoid signaling lipids to improve skeletal muscle function and increase healthspan during aging
调节类二十烷酸信号脂质以改善骨骼肌功能并延长衰老过程中的健康寿命
- 批准号:
10272407 - 财政年份:2020
- 资助金额:
$ 39.36万 - 项目类别:
相似海外基金
Genetic Architecture of Aging-Related TDP-43 and Mixed Pathology Dementia
衰老相关 TDP-43 和混合病理痴呆的遗传结构
- 批准号:
10658215 - 财政年份:2023
- 资助金额:
$ 39.36万 - 项目类别:
Chromatin architecture disruption and the vicious cycle of aging.
染色质结构破坏和衰老的恶性循环。
- 批准号:
10901040 - 财政年份:2023
- 资助金额:
$ 39.36万 - 项目类别:
Impact of Reproductive Aging on the Functional and Structural Architecture of the Human Brain
生殖衰老对人脑功能和结构的影响
- 批准号:
10313384 - 财政年份:2021
- 资助金额:
$ 39.36万 - 项目类别:
Relationship between clonal architecture of aging hematopoiesis and the risk of developing age-associated myeloid cancers.
衰老造血的克隆结构与发生与年龄相关的骨髓癌的风险之间的关系。
- 批准号:
305881 - 财政年份:2014
- 资助金额:
$ 39.36万 - 项目类别:
Operating Grants
Nucleosome architecture in aging and nuclear receptor activation in the liver
衰老中的核小体结构和肝脏中的核受体激活
- 批准号:
9442316 - 财政年份:2014
- 资助金额:
$ 39.36万 - 项目类别:
Nucleosome architecture in aging and nuclear receptor activation in the liver
衰老中的核小体结构和肝脏中的核受体激活
- 批准号:
9026604 - 财政年份:2014
- 资助金额:
$ 39.36万 - 项目类别:
Nucleosome architecture in aging and nuclear receptor activation in the liver
衰老中的核小体结构和肝脏中的核受体激活
- 批准号:
8679341 - 财政年份:2014
- 资助金额:
$ 39.36万 - 项目类别:
Transcriptional Architecture and Chromatin Landscape of Circadian Clocks in Aging
衰老过程中昼夜节律时钟的转录结构和染色质景观
- 批准号:
8707931 - 财政年份:2013
- 资助金额:
$ 39.36万 - 项目类别:
Transcriptional Architecture and Chromatin Landscape of Circadian Clocks in Aging
衰老过程中昼夜节律时钟的转录结构和染色质景观
- 批准号:
9063026 - 财政年份:2013
- 资助金额:
$ 39.36万 - 项目类别:
Transcriptional Architecture and Chromatin Landscape of Circadian Clocks in Aging
衰老过程中昼夜节律时钟的转录结构和染色质景观
- 批准号:
8580066 - 财政年份:2013
- 资助金额:
$ 39.36万 - 项目类别: