iPAT:Intelligent Diet Quality Pattern Analysis for Harmonized MA-National Trials

iPAT:用于协调 MA 国家试验的智能饮食质量模式分析

基本信息

  • 批准号:
    10276034
  • 负责人:
  • 金额:
    $ 74.84万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-15 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY A decade ago, the U.S. Dietary Guidelines Advisory Committee recommended dietary pattern approaches to examine relationships between diet and health outcomes. Meanwhile, longitudinal dietary data have become increasingly available. However, methods are underdeveloped for characterizing dynamic diet-quality variations and remain rudimentary for validating longitudinal diet-quality patterns, thus, leading to unclear evidence for assessing diet-health relationships and formulating dietary guidelines. A noticeable gap exists between the dietary pattern literature and the fast-growing statistical learning field with explosive growth of artificial intelligence algorithms. We propose to develop “iPAT:Intelligent Diet Quality Pattern Analysis for Harmonized MA-National Trials”. iPAT will leverage original and newly harmonized dietary data generated from 7 studies funded by NIDDK, NHLBI, and NIMH: 4 longitudinal randomized controlled trials (RCT) in Massachusetts (MA), and 3 large-scale longitudinal multi-site national studies, an RCT and one observational study (OS) from the Women’s Health Initiative (WHI), and one OS from the Coronary Artery Risk Development in Young Adults (CARDIA) study. We aim to harness over 20 newly-harmonized dietary datasets from these highly-comparable longitudinal studies that span up to 35 years and cross 50 clinical and health community centers to: 1) innovate by adapting our new visualization-aided trajectory pattern-recognition and validation algorithm to an intelligent and streamlined pattern analysis tool (iPAT) for longitudinal dietary data; 2) enable a new multi-view and comprehensive understanding of diet-quality trajectory patterns for multiple chronic disease outcomes that may not be discoverable from individual studies at different levels of granularity; and 3) create an accessible and expandable harmonized dietary database and open-access iPAT tool for diet-related studies. Our harmonized-data-driven approach will increase the likelihood of successfully addressing complex and subtle questions with large-scale dietary data, including but not limited to the cultural, age, gender and geographic variation in diet quality patterns and how diet quality may vary with context and time. Our iPAT approach will be built upon PI Fang’s behavioral trajectory pattern-recognition method which has been validated and replicated in five NIDA/NCI/NHLBI-funded longitudinal OS and RCTs. Developing this evidence- based iPAT tool will contribute to the infrastructure for diet-related studies, advance pattern-recognition methods, help scientific communities and the public to compare individual dietary behavior with local and national diet- quality patterns and associated dietary health risks. Our work will also help grow more valid evidence for dietary guidelines. More broadly, this iPAT project will contribute to creating a platform that supports harmonized data management, near-real-time pattern analyses and adaptive interventions.
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hua Fang其他文献

Hua Fang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hua Fang', 18)}}的其他基金

iPAT:Intelligent Diet Quality Pattern Analysis for Harmonized MA-National Trials
iPAT:用于协调 MA 国家试验的智能饮食质量模式分析
  • 批准号:
    10449302
  • 财政年份:
    2021
  • 资助金额:
    $ 74.84万
  • 项目类别:
iPAT:Intelligent Diet Quality Pattern Analysis for Harmonized MA-National Trials
iPAT:用于协调 MA 国家试验的智能饮食质量模式分析
  • 批准号:
    10640972
  • 财政年份:
    2021
  • 资助金额:
    $ 74.84万
  • 项目类别:
VIP:Visual-Valid Dietary Behavior Pattern Recognition for Local-National Trials
VIP:地方-国家试验的视觉有效饮食行为模式识别
  • 批准号:
    9907572
  • 财政年份:
    2019
  • 资助金额:
    $ 74.84万
  • 项目类别:
DISC: Describe Smoking Cessation in RCT Multi-Component Behavioral Intervention
DISC:在 RCT 多成分行为干预中描述戒烟
  • 批准号:
    8699178
  • 财政年份:
    2013
  • 资助金额:
    $ 74.84万
  • 项目类别:
DISC: Describe Smoking Cessation in RCT Multi-Component Behavioral Intervention
DISC:在 RCT 多成分行为干预中描述戒烟
  • 批准号:
    8505922
  • 财政年份:
    2013
  • 资助金额:
    $ 74.84万
  • 项目类别:

相似海外基金

Advisory Committees
咨询委员会
  • 批准号:
    7353899
  • 财政年份:
    2006
  • 资助金额:
    $ 74.84万
  • 项目类别:
Toward a Political Theory of Bioethics: Participation, Representation, and Deliberation on Federal Bioethics Advisory Committees
迈向生命伦理学的政治理论:联邦生命伦理学咨询委员会的参与、代表和审议
  • 批准号:
    0451289
  • 财政年份:
    2005
  • 资助金额:
    $ 74.84万
  • 项目类别:
    Standard Grant
Advisory Committees
咨询委员会
  • 批准号:
    7557224
  • 财政年份:
  • 资助金额:
    $ 74.84万
  • 项目类别:
Advisory Committees
咨询委员会
  • 批准号:
    7902286
  • 财政年份:
  • 资助金额:
    $ 74.84万
  • 项目类别:
Advisory Committees
咨询委员会
  • 批准号:
    7691385
  • 财政年份:
  • 资助金额:
    $ 74.84万
  • 项目类别:
Advisory Committees
咨询委员会
  • 批准号:
    8150373
  • 财政年份:
  • 资助金额:
    $ 74.84万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了