Elucidating the mechanism behind oscillation between glycolysis and gluconeogenesis

阐明糖酵解和糖异生之间振荡背后的机制

基本信息

  • 批准号:
    10277367
  • 负责人:
  • 金额:
    $ 37.04万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-01 至 2026-04-30
  • 项目状态:
    未结题

项目摘要

Project Summary The overarching research goal of the Park lab is to gain systems-level understanding of metabolism (including its regulation) and rationally engineer mammalian and microbial metabolism for biotechnology and medicine. We are a team of open-minded and hardworking researchers who employ core analytical techniques and ceaselessly innovate (and adopt) new technologies to solve challenging problems associated with various diseases and organisms. Our current research is twofold: microbial conversion of carbon dioxide into value-add products for economic and environmental benefits; and elucidation of thermodynamic and kinetic mode of metabolic control in mammalian gluconeogenesis. One of our goals over the next five years is to develop key technologies to mathematically reconstruct human central carbon metabolism in thermodynamic and kinetic terms. Until recently, characterization of metabolism has relied mainly on comparison of relative metabolite and enzyme levels between control and experimental groups. We will go beyond measuring just the “levels” and quantify rates and energies, which are direct representation of metabolism in action yet difficult to measure because they are substantive yet intangible. To this end, we will employ state-of-the-art liquid chromatography-mass spectrometry, mathematical modeling, and novel isotope tracers that can yield the most thermodynamic and kinetic information in cellular metabolism. We aim to apply these techniques to investigating the two central metabolic pathways: glycolysis and gluconeogenesis. The two pathways largely share a common enzyme set, yet the former converts glucose into cellular energy and biomass precursors while the latter converts non- carbohydrate substrates into glucose. These functionally opposite metabolic pathways support systemic glucose homeostasis in humans and, in microbes, various bioproduct synthesis from a wide range of carbon substrates with varying degrees of oxidation. This project will map kinetic and thermodynamic bottlenecks of the two pathways in mammalian cells and elucidate regulatory mechanisms that enable seamless transitions and coordination between them. As dysregulation of these pathways are implicated in type II diabetes and cancer, we envision that this research program will lead to effective metabolic control and engineering strategies to remedy defective carbon metabolism in diseases. The upshot of successfully completing the proposed research will contribute to advancing therapeutic development for diabetes and cancer.
项目摘要 帕克实验室的首要研究目标是获得系统级的理解, 代谢(包括其调节)和合理工程哺乳动物和微生物 生物技术和医学的新陈代谢。我们是一个开放的团队, 研究人员采用核心分析技术,不断创新(并采用)新的 技术,以解决与各种疾病和生物体相关的挑战性问题。 我们目前的研究是双重的:微生物转化二氧化碳为增值产品 的热力学和动力学模式, 在哺乳动物生殖过程中的代谢控制。我们未来五年的目标之一是 开发关键技术,以数学方式重建人类中心碳代谢, 热力学和动力学术语。直到最近,代谢的表征一直依赖于 主要是比较对照组和对照组之间的相对代谢物和酶水平, 实验组。我们将超越仅仅衡量“水平”,量化比率, 能量,这是直接代表新陈代谢的行动,但难以衡量 因为它们是实质性的,但又是无形的。为此,我们将采用最先进的液体 色谱-质谱法,数学建模,和新的同位素示踪剂,可以 产生细胞代谢中最多的热力学和动力学信息。我们的目标是应用 这些技术研究两个中心的代谢途径:糖酵解和 异源发生这两种途径在很大程度上共享一个共同的酶集,但前者 将葡萄糖转化为细胞能量和生物质前体,而后者将非 碳水化合物底物转化为葡萄糖。这些功能相反的代谢途径支持 人体和微生物中的全身葡萄糖稳态, 具有不同氧化程度的各种碳基质。该项目将绘制动力学 和热力学瓶颈的两个途径在哺乳动物细胞和阐明 监管机制,使它们之间的无缝过渡和协调。作为 这些通路的失调与II型糖尿病和癌症有关,我们设想, 这项研究计划将导致有效的代谢控制和工程策略, 治疗疾病中有缺陷的碳代谢。成功地完成了 拟议的研究将有助于推进糖尿病的治疗发展, 癌

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Junyoung O. Park其他文献

Vinyl chloride and 1,4-dioxane metabolism by Pseudonocardia dioxanivorans CB1190
Pseudonocardia dioxanivorans CB1190 的氯乙烯和 1,4-二恶烷代谢
  • DOI:
    10.1016/j.hazl.2021.100039
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alexandra L. Polasko;Yu Miao;Ivy Kwok;K. Park;Junyoung O. Park;Shaily Mahendra
  • 通讯作者:
    Shaily Mahendra
Energy budget of Drosophila embryogenesis
果蝇胚胎发生的能量收支
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    9.2
  • 作者:
    Yonghyun Song;Junyoung O. Park;L. Tanner;Yatsuhisa Nagano;J. Rabinowitz;S. Shvartsman
  • 通讯作者:
    S. Shvartsman
Integration of metabolomics and fluxomics via nonequilibrium thermodynamics
通过非平衡热力学整合代谢组学和通量组学
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Junyoung O. Park
  • 通讯作者:
    Junyoung O. Park
A parallel glycolysis supports rapid adaptation in dynamic environments
平行糖酵解支持动态环境中的快速适应
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Richard C. Law;Glenn Nurwono;Junyoung O. Park
  • 通讯作者:
    Junyoung O. Park
Robustness of mitochondrial biogenesis and respiration explain aerobic glycolysis
线粒体生物发生和呼吸的稳健性解释了有氧糖酵解
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Easun Arunachalam;Felix C. Keber;Richard C. Law;Chirag K. Kumar;Yihui Shen;Junyoung O. Park;Martin Wühr;Daniel J. Needleman
  • 通讯作者:
    Daniel J. Needleman

Junyoung O. Park的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Junyoung O. Park', 18)}}的其他基金

Elucidating the mechanism behind oscillation between glycolysis and gluconeogenesis
阐明糖酵解和糖异生之间振荡背后的机制
  • 批准号:
    10799353
  • 财政年份:
    2021
  • 资助金额:
    $ 37.04万
  • 项目类别:
Elucidating the mechanism behind oscillation between glycolysis and gluconeogenesis
阐明糖酵解和糖异生之间振荡背后的机制
  • 批准号:
    10609036
  • 财政年份:
    2021
  • 资助金额:
    $ 37.04万
  • 项目类别:
Elucidating the mechanism behind oscillation between glycolysis and gluconeogenesis
阐明糖酵解和糖异生之间振荡背后的机制
  • 批准号:
    10807519
  • 财政年份:
    2021
  • 资助金额:
    $ 37.04万
  • 项目类别:
Elucidating the mechanism behind oscillation between glycolysis and gluconeogenesis
阐明糖酵解和糖异生之间振荡背后的机制
  • 批准号:
    10436979
  • 财政年份:
    2021
  • 资助金额:
    $ 37.04万
  • 项目类别:

相似海外基金

Identifying key fire drivers in Australia; biomass, climate or people
确定澳大利亚的主要火灾驱动因素;
  • 批准号:
    DE240100340
  • 财政年份:
    2024
  • 资助金额:
    $ 37.04万
  • 项目类别:
    Discovery Early Career Researcher Award
Develop novel-processing for the use of paludiculture biomass as an alternative feedstock for regenerative pulp production.
开发利用沼生生物质作为再生纸浆生产替代原料的新工艺。
  • 批准号:
    10102591
  • 财政年份:
    2024
  • 资助金额:
    $ 37.04万
  • 项目类别:
    Investment Accelerator
Converting Biomass into Value-Added Catalysts for Water Electrolysis
将生物质转化为水电解的增值催化剂
  • 批准号:
    LP230100183
  • 财政年份:
    2024
  • 资助金额:
    $ 37.04万
  • 项目类别:
    Linkage Projects
FMSG: Eco: Electrocatalytic Production of Valuable Polymer Feedstocks from Biomass-derived Furanics and CO2
FMSG:Eco:利用生物质衍生的呋喃和二氧化碳电催化生产有价值的聚合物原料
  • 批准号:
    2328176
  • 财政年份:
    2024
  • 资助金额:
    $ 37.04万
  • 项目类别:
    Standard Grant
CAREER: Origin and Evolution of the Light Absorption of Biomass Burning Aerosol
职业:生物质燃烧气溶胶光吸收的起源和演变
  • 批准号:
    2339449
  • 财政年份:
    2024
  • 资助金额:
    $ 37.04万
  • 项目类别:
    Continuing Grant
Targeted Synthesis of Biomass-derived Carbon Materials (TSBCM): structural evolution mechanisms, regulating strategies, and application demonstration
生物质碳材料的靶向合成(TSBCM):结构演化机制、调控策略和应用示范
  • 批准号:
    EP/Z000742/1
  • 财政年份:
    2024
  • 资助金额:
    $ 37.04万
  • 项目类别:
    Fellowship
SPITFIRE: Self-Powered Biomass Stove For Remote Communities
SPITFIRE:适用于偏远社区的自供电生物质炉
  • 批准号:
    10041051
  • 财政年份:
    2023
  • 资助金额:
    $ 37.04万
  • 项目类别:
    Collaborative R&D
Biomass-derived Carbon Dots Enable Flexible, On-Demand Hydrogen Delivery
生物质衍生的碳点实现灵活、按需的氢气输送
  • 批准号:
    DP230102192
  • 财政年份:
    2023
  • 资助金额:
    $ 37.04万
  • 项目类别:
    Discovery Projects
Multifunctional Biomass Coatings for Electrostatic Induced Fire Hazards
针对静电引起的火灾危险的多功能生物质涂料
  • 批准号:
    DE230100180
  • 财政年份:
    2023
  • 资助金额:
    $ 37.04万
  • 项目类别:
    Discovery Early Career Researcher Award
Direct conversion of plant biomass to bioplastic by co-culture system
通过共培养系统将植物生物质直接转化为生物塑料
  • 批准号:
    23H02343
  • 财政年份:
    2023
  • 资助金额:
    $ 37.04万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了